CHPRC ADMINISTRATIVE DOCUMENT	PROCESSING A	ND APPRO	OVAL	
	OWNING ORGANIZ Remedy Selection			
Document Number: SGW-56759	Revision/C	hange Numbe	er: Rev. 0	
DOCUMENT TYPE (Check Applicable) [] Plan [X] Report	[] Study [] Des	scription Docu	ment [] Oth	ier
DOCUMENT ACTION (Check One) [X] New [] Revision	[] Cancellation			
RESPONSIBLE CONTACTS				
Name	×		Phone Num	-
Author: Donna Morgans			509-373-3	TENDOTEN .
Manager: Alaa Aly			509-376-0	300
DOCUMENT CONTROL				
Is the document intended to be controlled within the Document Ma	nagement Control S	ystem (DMCS)? [x] Yes [] No
Does document contain scientific and technical information intended	ed for public use?		[x] Yes [] No
Does document contain controlled-use information				x] No
DOCUMENT REVISION SUMMARY			, , , , ,	.,
NOTE: Provide a brief description or summary of the changes for the document list	ted.			
REVIEWERS Others				
Name (print)		Organizati	ion	
Lee Brouillard	SGRP Projec			
Richard Oldham	Field Servi			
Jose Archuleta	ECQA			
Chris Sutton	Sample Mana	gement		
Fred Ruck	Technical S		Washington and the second	
Robert Cathel	ESHR	01 11005	***************************************	
	**	o sample o some		
			2000	
		*		
APPROVAL SIGNATURES				
	11-1	RFIF	ASE / ISSUE	*
Author: Coma L Morgans	5/20/14	TALLE	7.027.10002	_
Name: (Print) Donna L Morgans	Date			、 I
Responsible Manager:	5/20/14 Date	DATE: May 29, 2	HANFORD RELEASE	
Name: (print) Alaa H Aly	Date		4	
Other:	3/20/14		· ·	J
Name: (print) Ronald C Brunke	Date			

Date Received for Clearance Process (MM/DD/YYYY) 05/20/2014	INF	ORMATION CLE	EARANCE FORM	
A. Information Category	B. Document Number SGW	-56759 Revision	0	
Abstract Journal Article Summary Internet Visual Aid Software Full Paper Report	C. Title Supplement to the 20 Assessment (2008 th		vater Operable Ur	nit Data Quality
Other	D. Proposed Internet Address			
E. Required Information (MANDATORY)1. Is document potentially Classified? I	No O Yes	7. Does Information Co	ontain the Following: Patentable) Subject Matter?	No Yes
Aly, Alaa H Approved via Manager Required (Print and Sign)	IDMS Data File	If "Yes", OUO Ex		
If Yes		b. Commercial Pro as Proprietary a	prietary Information Receiv	ved in Confidence, Such
ADC Required (Print and Sign)	No Yes Classified	No O` c. Corporate Privile		_
2. Official Use Only No (Yes Exemption No.	If "Yes", OUO E	•	
3. Export Controlled Information No (Yes OUO Exemption No. 3	d. Government Priv If "Yes", Exempt	vileged Information? on No. 5	No Yes
4. UCNI No () Yes			es", Attach Permission.
	Yes OUO Exemption No. 5	f. Trademarks?	No Yes If "Yes"	es", Identify in Document.
6. Other (Specify)			ing submission to OSTI?	No Yes
	F. Complete for		Public C Limited	
Title of Journal	1. Complete loi a	a Journal Afficie		
	G. Complete for	a Presentation		
Title for Conference or Meeting				
Group Sponsoring				
Date of Conference		4. City/State		
5. Will Information be Published in Proceedir	ngs? No Yes	6. Will Material be Hand	ed Out? No	Yes
H. Information Owner/Author/Requestor		Responsible Manager		
Morgans, Donna L Approved	d via IDMS Data File	Aly, Alaa H Ap (Print and Sign)	proved via IDMS I	Data File
	ale (Anti-lana Only)	(Fillit and Sign)		
Approval by Direct Report to President (Spee	(Print and	Sign)		
I. Reviewers Yes Print General Counsel X Swer	nson, Raymond T	Signature Approved via	IDMS Data File	ublic Y/N (If N, complete J)
	ison, raymona i	- Approved via	IDIVIO Data i ile	Y / N
Office of External Affairs DOE Mors	e, John G	Annroved via	IDMS Data File	Y / N
	o, com o	7 Approved via	IBINIO Bata i iic	Y / N
Other		—(1)		Y / N
Other		-		Y / N Y / N
J. Comments			Information Clearance Ap	
			Approved for Public Release; Further Dissemination Unlimited	
			APPROVED	
				9:38 am, May 29, 2014

```
- <workflow name="(JDA) Normal - SGW-56759 REV 0" id="182570925">
 - <task name="Clearance Process" id="0" date-initiated="20140521T1424"</p>
     performer="Janis D Aardal" performer-id="267960" username="h0090683">
     <comments>ATTN - Due Wednesday, 5/28/14 - COB Please approve the
      Rev. 0 supplement to the 200-PO-1 GW OU Data Quality Assessment
      (2008-2013) for public release. Poc Donna Morgans 373-3963 Thank you,
      Janis Aardal Information Clearance</comments>
   <task name="Add XML" id="1" date-due="20140521T1424" date-
     done="20140521T1423" />
   <task name="Manager Approval" id="41" date-due="20140526T1424" date-
     done="20140521T1536" performer="Alaa H Aly" performer-id="141440097"
     username="h9198318" disposition="Approve" authentication="true" />
   <task name="Document Reviewer1" id="54" date-due="20140526T1536" date-
     done="20140521T1545" performer="Raymond T Swenson" performer-
     id="141094653" username="h0059138" disposition="Public Release"
     authentication="true" />
   <task name="Document Reviewer2" id="53" date-due="20140526T1536" date-
     done="20140521T1546" performer="John G Morse" performer-id="585438"
     username="h1373638" disposition="Public Release" authentication="true" />
   <task name="Doc Owner Clearance Review" id="13" date-due="20140522T1546"
     date-done="20140527T0942" performer="Donna L Morgans" performer-
     id="55775691" username="h9741356" disposition="Send On"
     authentication="true" />
   <task name="Verify Doc Consistency" id="4" date-due="20140528T0942" date-
     done="20140527T1537" performer="Janis D Aardal" performer-id="267960"
     username="h0090683" disposition="Cleared" authentication="true" />
 </workflow>
```

Supplement to the 200-PO-1 Groundwater Operable Unit Data Quality Assessment (2008 through 2013)

Prepared for the U.S. Department of Energy Assistant Secretary for Environmental Management

Contractor for the U.S. Department of Energy under Contract DE-AC06-08RL14788

Approved for Public Release; Further Dissemination Unlimited

Supplement to the 200-PO-1 Groundwater Operable Unit Data Quality Assessment (2008 through 2013)

Date Published May 2014

Prepared for the U.S. Department of Energy Assistant Secretary for Environmental Management

Contractor for the U.S. Department of Energy under Contract DE-AC06-08RL14788

APPROVED

By Lee Ann Snyder at 9:39 am, May 29, 2014

Release Approval

Date

Approved for Public Release; Further Dissemination Unlimited

TRADEMARK DISCLAIMER

Reference herein to any specific commercial product, process, or service by tradename, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof or its contractors or subcontractors.

This report has been reproduced from the best available copy.

Printed in the United States of America

Executive Summary

2	The scope of this report is to summarize the data quality assessment (DQA) activities
3	performed to evaluate the results of 8,645 groundwater samples collected from wells in
4	the 200-PO-1 Groundwater Operable Unit (OU) from January 2008 to December 2013.
5	The objective of this DQA is to determine whether the data can support the baseline
6	risk assessment (BRA) and selection of remedial alternatives for the 200-PO-1
7	Groundwater OU. The requirements for the sampling program are found in Remedial
8	Investigation/Feasibility Study Work Plan for the 200-PO-1 Groundwater Operable
9	Unit, 1 hereafter referred to as the Remedial Investigation (RI)/Feasibility Study (FS)
10	Work Plan. Over the assessment period, samples were also collected in accordance with
11	the following documentation:
12	• Sampling and Analysis Plan for the 200-PO-1 Groundwater Operable Unit ²
13	• Remedial Investigation/Feasibility Study Work Plan for the 200-PO-1 Groundwater
14	Operable Unit (Appendix A, "Sampling and Analysis Plan for Remedial
15	Investigation and Characterization of the 200-PO-1 Groundwater Operable Unit") ³
16	Sampling and Analysis Plan for Groundwater Surveillance Monitoring on the
17	Hanford Site ⁴
18	• RCRA Assessment Plan for Single-Shell Tank Waste Management Area A-AX at the
19	Hanford Site ⁵
20	• Integrated Disposal Facility Operational Monitoring Plan to Meet DOE
21	<i>Order 435.1</i> ⁶

1

¹ DOE/RL-2007-31, 2008, Remedial Investigation/Feasibility Study Work Plan for the 200-PO-1 Groundwater Operable Unit, Rev. 0, U.S. Department of Energy, Richland Operations Office, Richland, Washington.

² DOE/RL-2003-04, 2005, Sampling and Analysis Plan for the 200-PO-1 Groundwater Operable Unit, Rev. 1, U.S. Department of Energy, Richland Operations Office, Richland, Washington.

³ DOE/RL-2007-31, 2008, Remedial Investigation/Feasibility Study Work Plan for the 200-PO-1 Groundwater Operable Unit, Rev. 0, U.S. Department of Energy, Richland Operations Office, Richland, Washington.

⁴ DOE/RL-2012-59, 2013, Sampling and Analysis Plan for Groundwater Surveillance Monitoring on the Hanford Site, Rev. 0, U.S. Department of Energy, Richland Operations Office, Richland, Washington.

⁵ PNNL-15315, 2006, RCRA Assessment Plan for Single-Shell Tank Waste Management Area A-AX at the Hanford Site, Pacific Northwest National Laboratory, Richland, Washington.

1	The DQA process follows general DQA guidelines established by the
2	U.S. Environmental Protection Agency (EPA) in EPA/240/B-06/002, Data Quality
3	Assessment: A Reviewer's Guide (EPA QA/G-9R), and EPA/240/B-06/003, Data Quality
4	Assessment: Statistical Methods for Practitioners (EPA QA/G-9S). ⁷
5	The assessment is based on three levels of evaluation: verification, validation, and data
6	usability assessment. Data verification is the process of evaluating the completeness,
7	correctness, and conformance/compliance of a specific data set against the method,
8	procedural, or contractual requirements. Data validation is an analyte- and
9	sample-specific process that extends the evaluation of data beyond method, procedural,
10	or contractual compliance (i.e., data verification) to determine the analytical quality of a
11	specific data set. Finally, the data usability assessment is a determination of the adequacy
12	of the data to support a particular environmental decision and is based upon the
13	verification and validation results. When data are collected specifically to perform a
14	statistical test, the DQA must be consistent with the five-step process described in
15	EPA/240/B-06/002 and EPA/240/B-06/003. However, groundwater data for the
16	200-BP-5 Groundwater OU are collected using a judgmental sampling design. As a result
17	of using a judgmental sample design, steps 3 and 4 of the EPA five-step process do not
18	apply.
19	The 200-PO-1 Groundwater OU data set included 102,727 analytical results from
20	samples of 168 wells for 346 individual analytes over a period from January 2008 to
21	December 2013. More than 30,196 individual quality control (QC) results were generated
22	in support of the chemical analyses.
23	The conclusion of the assessment is that the 200-PO-1 Groundwater OU data are the
24	correct type, quality, and quantity to support the BRA and selection of remedial
25	alternatives. This supported by the results of the verification, validation, and data
26	usability assessment. With the exception of the findings described in the following
27	paragraphs, all groundwater samples were collected in accordance with the requirements
28	listed in the associated sampling and analysis plans (SAPs), monitoring plans, and work
29	plans each sample was collected under. Detection limits, precision, accuracy, and data

⁶ RPP-PLAN-26534, 2005, *Integrated Disposal Facility Operational Monitoring Plan to Meet DOE Order 435.1*, Rev. 0, CH2M HILL Hanford Group, Inc., Richland, Washington.

⁷ EPA/240/B-06/002, *Data Quality Assessment: A Reviewer's Guide*; EPA/240/B-06/003, *Data Quality Assessment: Statistical Methods for Practitioners*, U.S. Environmental Protection Agency, Washington, D.C.

1 completeness were analyzed for all groundwater samples to determine if any analytical 2 data should be rejected as a result of quality assurance or QC deficiencies. Other than 3 those results that were noted as unusable, the analytical data were found to be acceptable 4 for the intended use. 5 Comparison of the 200-PO-1 Groundwater OU data set with the overall Hanford Site 6 groundwater data set, as described in the annual Hanford Site groundwater monitoring 7 reports, showed that the 200-PO-1 Groundwater OU data are at least as good (in terms of 8 accuracy, precision, and blank contamination) as the overall Hanford Site groundwater 9 data set. Both field and laboratory performance parameters are equal to or better than 10 those for the Hanford Site groundwater data as a whole. The overall project completeness 11 is estimated to be greater than 99 percent. Completeness is a measure of valid data 12 obtained from the laboratory compared to the amount of data expected to be obtained, based on the analyses requested in the SAP(s), under correct normal conditions. 13 14 While the overall laboratory QC performance was very good, specific deficiencies were 15 identified and are listed below: 16 A total of 69 individual analytes reported laboratory contamination that exceeded QC 17 criteria. Seventeen analytes (ammonium ion; 1,2,3,6,7,8-hexachlorodibenzo-p-dioxin; 1,2,3,7,8,9-hexachlorodibenzofuran; 1,2,3,7,8,9-hexachlorodibenzo-p-dioxin; 18 19 1,2,3,7,8-pentachlorodibenzofuran: 1,2,3,7,8-pentachlorodibenzo-p-dioxin; 2,3,4,6,7,8-hexachlorodibenzofuran; 2,3,4,7,8-pentachlorodibenzofuran; 20 heptachlorodibenzofurans; heptachlorodibenzo-p-dioxins; hexachlorodibenzofurans: 21 22 hexachlorodibenzo-p-dioxin; octachlorodibenzofuran; octachlorodibenzo-p-dioxin; 23 pentachlorodibenzofurans; and pentachlorodibenzo-p-dioxins) reported 100 percent 24 of their results outside of acceptable limits. A total of 819 individual sample results required qualification as a result of laboratory contamination. 25 26 In total, 105 analytes were reported outside the QC acceptance criteria for laboratory 27 control samples (LCSs), which represented approximately 0.31 percent of the total number of LCSs. A total of 122 individual sample results required qualification as a 28 29 result of LCS recoveries reported outside QC acceptance criteria. 30 In total, 139 analytes were reported outside the OC acceptance criteria for matrix 31 spike (MS)/matrix spike duplicate (MSD) samples, which represented approximately 32 0.98 percent of the total number of LCSs. A total of 322 individual sample results

1	required qualification as a result of MS/MSD recoveries reported outside QC
2	acceptance criteria.
3	• In total, 15 analytes were reported outside the QC acceptance criteria for surrogate
4	spike recoveries, which represented approximately 1.0 percent of the total number of
5	LCSs. A total of 219 individual sample results required qualification as a result of
6	surrogate spike recoveries reported outside QC acceptance criteria.
7	All method detection limits (MDLs) were evaluated against comparison values
8	(pertinent standards and criteria for the protection of human health and aquatic receptors).
9	A different set of comparison values were selected for the evaluation of samples results
10	from monitoring wells located inland of the Columbia River versus monitoring wells that
11	are located near the Columbia River. The purpose of this evaluation is to determine if the
12	MDL is adequate for confirming absence at levels less than or equal to the pertinent
13	criteria or standards.
14	The following findings were based on the evaluation of sample results obtained from
15	monitoring wells located inland from the Columbia River:
16	• MDLs for 195 analytes are less than or equal to their respective comparison value;
17	MDLs for these analytes are considered usable for all RI/FS decision making
18	purposes.
9	• MDLs for 51 analytes are greater than their respective comparison values; these
20	analytes are not known to be associated with a release at the Hanford Site
21	200 East Area. In total, 50 of these analytes were not detected in any groundwater
22	sample; the single remaining analyte reported one anomalous detection that was not
23	associated with a trend.
24	MDLs for 30 analytes report a portion of their MDLs greater than their respective
25	comparison value. With the exception of antimony, arsenic, beryllium, and cobalt,
26	the analytical data are considered usable for all RI/FS decision making purposes.
27	Most sample results for these five metals reported by EPA Method 6010
28	(Inductively Coupled Plasma-Atomic Emission Spectrometry) are not usable for
29	RI/FS decision making purposes because a high percentage of sample results are
30	reported as nondetected concentrations, and the MDL is not adequate for confirming
31	their absence at concentrations less than or equal to their comparison value.

The following findings were based on the evaluation of sample results obtained from monitoring wells that have potential to discharge to the Columbia River:

• MDLs for 161 analytes are less than or equal to their respective comparison value; MDLs for these analytes are considered usable for all RI/FS decision making purposes.

• MDLs for 52 analytes are greater than their respective comparison values; these

- MDLs for 52 analytes are greater than their respective comparison values; these analytes are not known to be associated with a release at the Hanford Site's 200 East Area. All of these analytes were not detected in any groundwater samples.
- MDLs for 28 analytes report a portion of their MDLs greater than their respective comparison value. With the exception of antimony, cadmium, cobalt, and silver, the analytical data are considered usable for all RI/FS decision-making purposes. Most sample results for these five metals reported by EPA Method 6010 (Inductively Coupled Plasma-Atomic Emission Spectrometry) are not usable for RI/FS decision making purposes. This is because a high percentage of sample results are reported as nondetected concentrations and the MDL is not adequate for confirming their absence at concentrations less than or equal to their comparison value.

The overall field QC performance was also very good; however, the following specific deficiencies were identified:

- In total, 28 analytes were reported outside the QC acceptance criteria for field duplicate pairs, which represented approximately 1.1 percent of the total number of field duplicate samples. No sample results are qualified as a result of field duplicate relative percent different (RPD) results reported outside QC acceptance criteria. Analytes and properties that report the highest RPDs (greater than 50 percent) include ammonium, coliform bacteria, aluminum, chromium, cobalt, copper, lead, uranium-235, chloromethane, and methylene chloride.
- One analyte was reported outside the QC acceptance criteria for field split pairs, which represented approximately 0.23 percent of the total number of field split samples. No sample results are qualified as a result of field split RPD results reported outside QC acceptance criteria. Tritium was the only analytes reported with an RPD outside QC acceptance criteria.

•	In total, 45 analytes were reported outside the QC acceptance criteria for field blanks,
	which represented approximately 2.2 percent of the total number of field blank
	samples. Analytes and properties with high (greater than 10 percent) overall
	percentages of positive blanks include fluoride, nitrate, sulfate, alkalinity, total
	organic carbon, total organic halides, calcium, cobalt, magnesium, sodium, uranium,
	vanadium, gross beta, iodine-129, strontium-90, technetium-99, tritium,
	iodomethane, and methylene chloride.

1 Contents

2	1	Intr	oductionoduction	1-1
3		1.1	Background	1-3
4		1.2	Well Selection	1-8
5		1.3	Laboratories	1-8
6		1.4	Analytical Methods	1-9
7		1.5	Contaminants of Potential Concern.	1-12
8	2	Pur	pose	2-1
9	3	Scop	pe	3-1
10	4	Data	a Verification	4-1
11		4.1	Data Quality Objectives	4-1
12			4.1.1 Completeness	4-1
13		4.2	Data Verification Activities.	4-1
14	5	Data	a Quality Evaluation	5-1
15		5.1	Laboratory Performance Requirements	5-1
16			5.1.1 Laboratory Quality Assurance and Quality Control Requirements	5-6
17			5.1.2 Comparison Values	5-6
18			5.1.3 Laboratory and Data Quality Evaluation Flags	5-7
19		5.2	Data Quality Evaluation Review Process	5-7
20			5.2.1 Guidance Documents	5-8
21	6	Data	a Quality Evaluation Results	6-1
22		6.1	Laboratory Contamination	6-1
23		6.2	Laboratory Precision	6-5
24		6.3	Laboratory Accuracy	6-5
25			6.3.1 Laboratory Control Samples	6-6
26			6.3.2 Laboratory Matrix Spike/Matrix Spike Duplicates	6-13
27			6.3.3 Surrogate Spikes	6-20
28		6.4	Sensitivity Analysis – Evaluation of Method Detection Limits	6-23
29			6.4.1 Method Detection Limit Results for Inland Groundwater Samples	6-23
30			6.4.2 MDL Results for Near-River Groundwater Samples	
31		6.5	Comparability – Trend Charts	
32	7	Han	ford Groundwater Report Review	7-1
33			7.1.1 Hanford Site Groundwater Quality Control and Quality Assurance	7-1
34	8	Field	d Quality Control	8-1
35		8.1	Field Quality Sample Results	8-1
36			8.1.1 Field Quality Control Requirements	8-1

1		8.1.2 Field Split Samples	8-2
2		8.1.3 Field Blank Samples	8-5
3	9	References	9-1
4		Appendices	
5	A	200-PO-1 Groundwater Operable Unit Data Quality Evaluation Results	A-i
6	В	200-PO-1 Groundwater Operable Unit Trend/Outlier Evaluation	B-i
7			

1 Figures

2 3	Figure 1-1.	Overview of 200-PO-1 Groundwater OU and Monitoring Wells Located in the Far Field	1-4
4 5	Figure 1-2.	Monitoring Wells Located in the WMA A/AX Tank Farms, PUREX Cribs, and BC Cribs and Trenches	1-5
6	Figure 1-3.	Monitoring Wells Located in the 216-A-29 Ditch and the 216-B-3 Pond Facility	1-6
7	Figure 1-4.	Location of 200-PO-1 Groundwater OU Boundaries at the Hanford Site	1-7
8		Tables	
9	Table 1-1.	List of Selected Groundwater Wells in the 200-PO-1 Groundwater OU	1-1
10	Table 1-2.	Summary of Analyte Classes and Associated Analytical Methods	1-9
11	Table 1-3.	200-PO-1 Groundwater OU COPCs	1-12
12	Table 3-1.	Data Quality Assessment Crosswalk	3-2
13	Table 4-1.	Summary of Data Verification Activities for Final Data Packages	4-3
14	Table 5-1.	Groundwater Radiological Analytical Performance Requirements	5-1
15	Table 5-2.	Groundwater Chemical Analytical Performance Requirements	5-2
16 17	Table 5-3.	List of Target Analytes with Comparison Values for the 200-PO-1 Groundwater OU	5-9
18	Table 5-4.	Data Qualification Flags	5-13
19	Table 6-1.	Laboratory QC Acceptance Criteria	6-1
20	Table 6-2.	Total Laboratory Blank Results by Analyte Class	6-2
21 22	Table 6-3.	Distribution of Contamination in Laboratory Blank Results Exceeding QC Criteria	6-2
23	Table 6-4.	Total Laboratory Duplicate Results by Analyte Class	6-6
24 25	Table 6-5.	Distribution of Analytes in Laboratory Duplicate Pairs with RPDs Exceeding QC Criteria	6-7
26	Table 6-6.	Total Laboratory Control Samples (LCS/LCSD) by Analyte Class	6-8
27	Table 6-7.	LCS Results Exceeding QC Criteria	6-8
28	Table 6-8.	Total Laboratory Spikes (MS/MSD) by Analyte Class	
29	Table 6-9.	Laboratory Matrix Spike Results Outside of QC Criteria	6-13
30	Table 6-10.	Total Laboratory Surrogates by Analyte Class	6-21
31	Table 6-11.	Laboratory Surrogates Exceeding QC Criteria	6-21
32 33 34	Table 6-12.	Comparison of MDLs from 200-PO-1 Groundwater OU Non-River Exposure Areas to Human Health Comparison Values (All MDLs Less Than or Equal to Comparison Value)	6-25
35 36 37	Table 6-13.	Comparison of MDLs from 200-PO-1 Groundwater OU Non-River Exposure Areas to Human Health Comparison Values (Some MDLs Less Than or Equal to Comparison Value)	6-32

2 3	1 able 6-14.	Areas to Human Health Comparison Values (All MDLs Less Than or Equal to Comparison Value)	6-34
4 5 6	Table 6-15.	Comparison of MDLs from 200-PO-1 Groundwater OU Near River Exposure Area to Human Health and Aquatic Comparison Values (All MDLs Less Than or Equal to Comparison Value)	6-36
7 8 9	Table 6-16.	Comparison of MDLs from 200-PO-1 Groundwater OU Near River Exposure Area to Human Health and Aquatic Comparison Values (Some MDLs Less Than or Equal to Comparison Value)	6-42
10 11 12	Table 6-17.	Comparison of MDLs from 200-PO-1 Groundwater OU Near River Exposure Area to Human Health and Aquatic Comparison Values (All MDLs Less Than or Equal to Comparison Value)	6-44
13	Table 7-1.	QA/QC Results for Groundwater Monitoring	7-3
14	Table 8-1.	Field QC Acceptance Criteria	8-1
15	Table 8-2.	Total Field Duplicate Results by Analyte Class	8-2
16	Table 8-3.	Summary of Field Duplicate Results Exceeding QC Criteria by Analyte	8-3
17	Table 8-4.	Total Field Split Results by Analyte Class	8-5
18	Table 8-5.	Summary of Field Split Samples Exceeding QC Criteria	8-5
19	Table 8-6.	Total Field Blank Results by Analyte Class	8-6
20 21	Table 8-7.	Summary of Field Blank Results Exceeding QC Criteria	8-6
7.1			

1 Terms

AEA alpha energy analysis

AES atomic emission spectrometry

ARAR applicable or relevant and appropriate requirement

BRA baseline risk assessment

CAS Chemical Abstracts Service

CCC criterion continuous concentration

CERCLA Comprehensive Environmental Response, Compensation, and Liability

Act of 1980

COPC contaminant of potential concern

DOE U.S. Department of Energy

DQA data quality assessment

DQO data quality objective

EPA U.S. Environmental Protection Agency

FS feasibility study

FY fiscal year

GC gas chromatography

GEA gamma energy analysis

GPC gas proportional counting

HASQARD Hanford Analytical Services Quality Assurance Requirements

Documents (DOE/RL-96-68)

HEIS Hanford Environmental Information System

ICP inductively coupled plasma

IDL instrument detection limit

KPA kinetic phosphorescence analysis

LCS laboratory control sample

LCSD laboratory control sample duplicate

MCL maximum contaminant level

MCLG maximum contaminant level guideline

MDA minimum detectable activity

MDL method detection limit

MS matrix spike or mass spectrometry

MSD matrix spike duplicate

N/A not applicable
OU operable unit

PCB polychlorinated biphenyl

PUREX Plutonium Uranium Extraction (Plant)

QA quality assurance

QC quality control

RCRA Resource Conservation and Recovery Act of 1976

RDR request for data review

RI remedial investigation

RL DOE Richland Operations Office

RPD relative percent difference

SAP sampling and analysis plan

SDG sample delivery group

SDT Sample and Data Tracking (system)

SVOC semivolatile organic compound

TPH total petroleum hydrocarbon

Tri-Party Agreement Hanford Federal Facility Agreement and Consent Order

VOC volatile organic compound

WMA waste management area

WSCF Waste Sampling and Characterization Facility

1 Introduction

- 2 This data quality assessment (DQA) report assesses the laboratory data for groundwater samples obtained
- 3 from 168 wells in the 200-PO-1 Groundwater Operable Unit (OU) for the period from January 2008 to
- 4 December 2013. The purpose of this DQA is to determine whether these data are the right type and of
- 5 sufficient quality and quantity to support remedial investigation (RI)/feasibility study (FS) decisions.
- 6 The information contained in this report follows guidelines for DQAs established by the Soil and
- 7 Groundwater Remediation Project. These guidelines are based on the U.S. Environmental Protection
- 8 Agency (EPA) guide EPA/240/B-06/002, Data Quality Assessment: A Reviewer's Guide
- 9 (EPA QA/G-9R). Table 1-1 identifies all 168 monitoring wells associated with the data evaluated in this
- report. Figures 1-1 through 1-3 show the locations of the 168 wells included in this DQA.

Table 1-1. List of Selected Groundwater Wells in the 200-PO-1 Groundwater Operable Unit

DOE/RL-2003-04				
299-E13-11 ^a	299-E25-26	699-20-E12S	699-40-33A	
299-E13-12 ^a	299-E25-28	699-20-E5A	699-41-1A ^a	
299-E13-14 ^a	299-E25-29P	699-21-6	699-41-23 ^a	
299-E13-16 ^a	299-E25-3	699-22-35	699-41-40	
299-E13-17 ^a	299-E25-31	699-2-3	699-42-12A	
299-E13-18 ^a	299-E25-32P	699-23-34A	699-42-39A	
299-E13-19 ^a	299-E25-32Q	699-23-34B	699-42-39B	
299-E13-4 ^a	299-E25-34	699-24-33	699-42-42B	
299-E13-5 ^a	299-E25-35	699-24-34A	699-43-3	
299-E13-6 ^a	299-E25-36	699-24-34B	699-43-44	
299-E13-8 ^a	299-E25-37	699-24-34C	699-43-45	
299-E13-9 ^a	299-E25-39 ^a	699-24-35	699-43-45	
299-E16-2	299-E25-40	699-24-46 ^a	699-44-39B	
299-E17-1	299-E25-41	699-25-33A ^a	699-45-42	
299-E17-12	299-E25-42	699-25-34A	699-46-21B ^a	
299-E17-13	299-E25-43	699-25-34B	699-46-4 ^a	
299-E17-14 ^a	299-E25-44	699-25-34D	699-47-5	
299-E17-16	299-E25-47	699-26-15A	699-48-7A	
299-E17-18	299-E25-48	699-26-33 ^a	699-49-13E	
299-E17-19	299-E25-6	699-26-34A	699-50-28B	
299-E17-21 ^a	299-E25-93 ^a	699-26-34B	699-52-19	

Table 1-1. List of Selected Groundwater Wells in the 200-PO-1 Groundwater Operable Unit

DOE/RL-2003-04					
299-E17-22	299-E25-94	699-26-35A	699-8-17		
299-E17-23	299-E26-12	699-26-35C	699-8-25		
299-E17-25	299-E26-13	699-2-6A	699-9-E2		
299-E18-1	299-E26-4	699-2-7	699-S12-3		
299-E23-1	499-S0-7	699-28-40	699-S19-E13 ^a		
299-E24-16	499-S0-8	699-29-4	699-S19-E14		
299-E24-18	499-S1-8J ^a	699-31-11	699-S3-25		
299-E24-20	699-10-54A ^a	699-31-31 ^a	699-S3-E12 ^a		
299-E24-21	699-10-E12 ^a	699-32-22A ^a	699-S6-E14A		
299-E24-22	699-12-2C	699-32-22B ^a	699-S6-E4A		
299-E24-23 ^a	699-12-4D	699-32-43 ^a	699-S6-E4B		
299-E24-3 ^a	699-13-0A	699-33-56 ^a	699-S6-E4D		
299-E24-33	699-13-1A	699-34-41B	699-S6-E4E		
299-E24-5	699-13-1E	699-34-42	699-S6-E4K		
299-E25-17	699-13-2D	699-35-9	699-S6-E4L		
299-E25-18	699-13-3A	699-37-43	699-S8-19		
299-E25-19	699-14-38	699-37-47A			
299-E25-2	699-17-5	699-37-E4			
299-E25-20	699-19-43	699-38-15			
299-E25-22	699-20-20	699-39-39			
299-E25-25 ^a	699-20-E12O ^a	699-40-1			
Miscellaneous Plans and Tri-Party Agreement Change Notices					
299-E17-26 ^b	299-E25-236°	699-42-40A ^d	699-43-41F ^e		
299-E24-24 ^b	699-41-42 ^d				

Table 1-1. List of Selected Groundwater Wells in the 200-PO-1 Groundwater Operable Unit

DOE/RL-2003-04

Sources: DOE/RL-2003-04, Sampling and Analysis Plan for the 200-PO-1 Groundwater Operable Unit.

Ecology et al., 1989, Hanford Federal Facility Agreement and Consent Order.

- a. Well is also listed in DOE/RL-2007-31, Remedial Investigation/Feasibility Study Work Plan for the 200-PO-1 Groundwater Operable Unit.
- b. RPP-PLAN-26534, Integrated Disposal Facility Operational Monitoring Plan to Meet DOE Order 435.1.
- c. PNNL-15315, RCRA Assessment Plan for Single-Shell Tank Waste Management Area A-AX at the Hanford Site.
- d. TPA-CN-205, Change Notice for Modifying Approved Documents/Workplans In Accordance with the Tri-Party Agreement Action Plan, Section 9.0, Documentation and Records: DOE/RL-2003-4, Revision 1, Sampling and Analysis Plan for the 200-PO-1 Operable Unit.
- e. DOE/RL-2012-59, Sampling and Analysis Plan for Groundwater Surveillance Monitoring on the Hanford Site.

1.1 Background

1

- 3 In 1989, the Hanford Site was listed on the National Priorities List (40 CFR 300, "National Oil and
- 4 Hazardous Substances Pollution Contingency Plan," Appendix B, "National Priorities List") pursuant
- 5 to the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA).
- 6 To address groundwater issues in the 200 East Area, 200-BP-5 Groundwater OU and 200-PO-1
- 7 Groundwater OU areas were established.
- 8 Two different boundary sets are currently used for the 200-PO-1 Groundwater OU. One type of boundary
- 9 is geographically defined; the other boundary type includes a 2,000 pCi/L (7,570 pCi/gal) isopleth for
- the groundwater tritium plume in the southeast portion of the unconfined aquifer. The tritium
- groundwater plume associated with the 200-PO-1 Groundwater OU extends eastward and southward from
- 12 potential contaminant sources in the southern portion of the 200 East Area. The geographic boundaries
- of the 200-PO-1 Groundwater OU are the Columbia River to the east, the 300-FF-5 Groundwater OU
- to the south, and the 200-PO-1 Groundwater OU to the north. Figure 1-4 shows these boundaries.
- 15 The 200-PO-1 Groundwater OU underlies six RCRA facilities and the nonpermitted BC Cribs and
- 16 Trenches area, which have groundwater monitoring requirements under the Resource Conservation and
- 17 Recovery Act of 1976 (RCRA) and Atomic Energy Act of 1954:
- Plutonium Uranium Extraction (PUREX) Cribs (includes the 216-A-10, 216-A-36B, and 216-37-1 Cribs)
- Waste Management Area (WMA) A/AX Tank Farms (241-A Tank Farm and 241-AX Tank Farm)
 and the 216-A-29 Ditch
- BC Cribs and Trenches
- 216-B-3 Pond Facility (three lobes)
- 24 The largest groundwater plumes within the 200-PO-1 Groundwater OU are tritium, nitrate, and
- 25 iodine-129, and these plumes originate in the PUREX Plant area. More limited plumes of contamination
- include strontium-90 near the 216-A-36B Crib (a PUREX Crib) and technitium-99 in WMA A/AX.
- 27 Other contaminants of potential concern (COPCs) include smaller plumes of arsenic, chromium,
- cobalt-60, cyanide, manganese, uranium, and vanadium.

Figure 1-1. Overview of 200-PO-1 Groundwater OU and Monitoring Wells Located in the Far Field

Figure 1-2. Monitoring Wells Located in the WMA A/AX Tank Farms, PUREX Cribs, and BC Cribs and Trenches

1-5

Figure 1-3. Monitoring Wells Located in the 216-A-29 Ditch and the 216-B-3 Pond Facility

Figure 1-4. Location of 200-PO-1 Groundwater OU Boundaries at the Hanford Site

3

4

5

6

Groundwater monitoring of wells now in the 200-PO-1 Groundwater OU has been conducted at least as far back as the year 1955. Analytical data for these samples and their associated field quality control (QC) samples are maintained in the Hanford Environmental Information System (HEIS) database; the data are summarized in annual groundwater monitoring reports. The most recent of these reports is

- 1 DOE/RL-2013-22, Hanford Site Groundwater Monitoring Report for 2012 (hereafter, these reports are
- 2 referred to as "annual groundwater monitoring reports").
- 3 As discussed in DOE/RL-2007-31, Remedial Investigation/Feasibility Study Work Plan for the
- 4 200-PO-1 Groundwater Operable Unit (Appendix A, "Sampling and Analysis Plan for Remedial
- 5 Investigation and Characterization of the 200-PO-1 Groundwater Operable Unit"), the historical
- 6 groundwater monitoring data were used as input for DOE/RL-2007-31.
- 7 Groundwater sampling within the 200-PO-1 Groundwater OU is performed in accordance with the
- 8 following facility-specific RCRA monitoring plans and 200-PO-1 Groundwater OU work plans and
- 9 sampling and analysis plans (SAPs):
- DOE/RL-2003-04, Sampling and Analysis Plan for the 200-PO-1 Groundwater Operable Unit
- 11 DOE/RL-2007-31, Appendix A
- DOE/RL-2012-59, Sampling and Analysis Plan for Groundwater Surveillance Monitoring on the
 Hanford Site
- PNNL-15315, RCRA Assessment Plan for Single-Shell Tank Waste Management Area A-AX at the Hanford Site
- RPP-PLAN-26534, Integrated Disposal Facility Operational Monitoring Plan to Meet DOE
 Order 435.1

18 1.2 Well Selection

- 19 In total, 168 monitoring and compliance wells were identified for inclusion in this DQA. These wells,
- which represent a subset of the total number of wells in the 200-PO-1 Groundwater OU, were selected
- 21 because they had samples collected from the January 2008 to December 2013 timeframe. The list of the
- 22 168 wells is presented in Table 1-1 and their locations are shown in Figures 1-1 through 1-4.
- 23 The wells selected for sampling include those from the monitoring well network of the 200-PO-1
- Groundwater OU, as originally established in DOE/RL-2003-04, through a review of data associated with
- the wells and any data results exceeding preliminary remediation goals. The monitoring well network also
- 26 included characterization wells as described in DOE/RL-2007-31, Appendix A. Finally, wells associated
- 27 with treatment, storage, and/or disposal facilities within the 200-PO-1 Groundwater OU were also added
- to the list of 168 wells.

29 1.3 Laboratories

- 30 The groundwater samples collected were analyzed at the following laboratories:
- 222-S Laboratory, located on the Hanford Site and managed by Advanced Technologies and
- 32 Laboratories International, Inc. performed chemical analyses on selected groundwater samples.
- Eberline Services, located in Richmond, California, performed radionuclide analyses on selected groundwater samples.
- Lionville Laboratory, located in Exton, Pennsylvania, performed chemical analyses on select groundwater samples.
- Test America, Denver, located in Denver, Colorado, performed chemical analyses on selected groundwater samples.

- Test America, Knoxville, located in Knoxville, Tennessee, performed chemical analyses on selected
 groundwater samples.
- Test America, Richland, located in Richland, Washington, performed chemical and radionuclide
 analyses on selected groundwater samples.
- Test America, St. Louis, located in St. Louis, Missouri, performed chemical analyses on selected groundwater samples.
- Waste Sampling and Characterization Facility (WSCF) Analytical Laboratory performed chemical
 and radiological analyses on selected groundwater samples. WSCF is located on the Hanford Site and
 is operated by Mission Support Alliance for the U.S. Department of Energy (DOE), Richland
 Operations Office (RL).
- 11 Chapters 5 through 7 discuss the analytical data provided by these laboratories.

1.4 Analytical Methods

- Groundwater samples were analyzed using the methods listed in Table 1-2. Both multi-component and
- single-component method-based analyses were used. Multi-component method-based analyses are those
- analyses typically based upon EPA methods, as applicable, which yield concentration data for multiple
- analytes in a single analysis. The analytes may include both target analytes and non-target analytes.
- 17 Single-component method-based analyses are those analyses typically based upon EPA methods, as
- applicable, which yield concentration data for a single target analyte in a single analysis. Sample results
- were reported in the HEIS database.

Table 1-2. Summary of Analyte Classes and Associated Analytical Methods

Table 12. Cultimary of Articipite Gladelee and Accordated Articipited Mounted			
Analytical Method	Parameter		
General Chemistry			
EPA Method 2320	Alkalinity		
EPA Method 310.1	Alkaninty		
EPA Method 120.1	Conductivity		
Field Method	Conductivity		
Field			
EPA Method 150.1	pН		
EPA Method 4500B			
Field	Temperature Turbidity Dissolved oxygen Chemical oxygen demand Total recoverable oil and grease TPH-diesel range organics		
EPA Method 180.1			
EPA Method 360.1			
EPA Method 410.4			
EPA Method 9070			
WTPH_DIESEL			

Table 1-2. Summary of Analyte Classes and Associated Analytical Methods

Analytical Method	Parameter			
EPA Method 9020	Total organic halides			
EPA Method 9034	Sulfide			
EPA Method 9060	Total organic carbon			
EPA Method 9223	Coliform			
Field	Reduction-oxidation potential			
Anions, Cation	ns, and Ammonia			
EPA Method 350.1	Ammonia			
EPA Method 9056	Anions			
EPA Method 300.0	Allions			
EPA Method 300.7	Cations			
EPA Method 9012	Cyanide			
EPA Method 335.2				
EPA Method 4500E				
M	letals			
EPA Method 6010	ICP metals			
EPA Method 6020	ICP/MS metals			
EPA Method 200.8	ICF/IVIS IIICIAIS			
EPA Method 7060 (Arsenic)				
EPA Method 7131 (Cadmium)	Graphite furnace atomic absorption metals			
EPA Method 7421 (Lead)				
EPA Method 7196	Hexavalent chromium			
EPA Method 7470 (Mercury)	Cold vapor atomic absorption			
VOCs				
EPA Method 8260	GC/MS VOCs			
EPA Method 8015	GC VOCs			
SVOCs, Pesticides, PCBs, Herbicides, and Dioxins/Furans				
EPA Method 8270	GC/MS SVOCs			
EPA Method 8040	GC phenolic			
EPA Method 8041	GC phenolic			
EPA Method 8081	Pesticides			

Table 1-2. Summary of Analyte Classes and Associated Analytical Methods

Analytical Method	Parameter			
EPA Method 8082	PCBs			
EPA Method 8151	Herbicides			
EPA Method 8290	Dioxins/furans			
Radiochemistry				
EPA Method 906.0	LSC tritium			
Separation and LSC	Tritium			
EPA Method 9310	Gross alpha/gross beta			
GPC	Gross alpha			
Separation, Precipitation, and AEA	Americium-241			
GPC	Gross beta			
LSC	Carbon-14			
Gamma Spectroscopy	Gamma emitters			
Separation and Gamma Spectroscopy	Iodine-129			
LSC	Nickel-63			
Separation, Precipitation, and AEA	Neptunium-237			
Separation and AEA	Pa-231			
ICP/MS, KPA	Total uranium			
Separation, Precipitation, and AEA	Plutonium isotopes			
Separation and GPC	Radium isotopes			
AEA				
Separation and LSC	Selenium-79			
Separation, Precipitation, and GPC	Strontium-90			
Separation and GPC	Tarlandian 00			
Separation and LSC	Technetium-99			
Separation, Precipitation, and AEA	Thorium isotopes			
Precipitation and AEA	Uranium isotopes			

Table 1-2. Summary of Analyte Classes and Associated Analytical Methods

Analytical Method		Parameter			
AEA	=	alpha energy analysis	LSC	=	liquid scintillation counting
EPA	=	U.S. Environmental Protection Agency	MS	=	mass spectrometry
GC	=	gas chromatography	PCB	=	polychlorinated biphenyl
GPC	=	gas proportional counting	SVOC	=	semivolatile organic compound
ICP	=	inductively coupled plasma	VOC	=	volatile organic compound
KPA	=	kinetic phosphorescence analysis			

2

1.5 Contaminants of Potential Concern

- A data quality objectives (DQOs) process was conducted in 2007 to support the RI for the 200-PO-1
- 4 Groundwater OU (SGW-34011, Data Quality Objectives Summary Report Supporting the 200-PO-1
- 5 Groundwater Operable Unit). This DQO process resulted in a comprehensive list of COPCs, which was
- 6 revised to a final list of 44 COPCs as shown in Table 1-3.
- 7 The COPCs were identified for RI/FS characterization (Table 1-3) or treatment, storage, and/or disposal
- 8 process monitoring. Additional analytes have been reported by using a multi-component method-based
- 9 analysis approach (as described in Section 1.4).

Table 1-3, 200-PO-1 Groundwater OU COPCs

Radionuclides	Metals	Inorganics
Gross alpha	Antimony	Fluoride
Iodine-129	Arsenic	Nitrate
Neptunium-237	Cadmium	Nitrite
Protactinium-231	Chromium	
Selenium-79	Lead	Volatile Organics
Strontium-90	Manganese	1,1,2,2-Tetrachloroethane
Technetium-99	Nickel	1,2-Dichloroethane
Tritium	Thallium	1,4-Dioxane
Uranium-234	Uranium	Benzene
Uranium-238	Vanadium	Bromodichloromethane
	Zinc	Carbon Tetrachloride
		Dibromochloromethane
		Hexane
		Methylene Chloride
		Tetrachloroethene
		Trichloroethene
		Vinyl Chloride

Table 1-3. 200-PO-1 Groundwater OU COPCs

Semivolatile Organics and Pesticides	
2,4-Dinitrophenol	
Bis(2-ethylhexyl)phthalate	
Dieldrin	
Dimethoate	
Heptachlor	
Heptachlor Epoxide	
Nitrobenzene	
Pentachlorophenol	

Source: DOE/RL-2007-31, Remedial Investigation/Feasibility Study Work Plan for the 200-PO-1 Groundwater Operable Unit.

2

This page intentionally left blank.

2 Purpose

- 2 The 200-PO-1 Groundwater OU DQA evaluates laboratory data for groundwater samples obtained from
- 3 168 wells in the 200-PO-1 OU from January 2008 through December 2013. Included in this data set are a
- 4 limited number of groundwater samples that were also included in SGW-41557, 200-PO-1 Groundwater
- 5 Operable Unit Data Quality Assessment. Groundwater data included in this DQA were collected to
- 6 support the 200-PO-1 Groundwater OU RI/FS process and other activities (e.g., monitoring data).
- 7 This DQA is performed to serve the following purposes:
- Ensure that the data are of sufficient quality to provide an appropriate description of 200-PO-1 Groundwater OU conditions.
- Specifically assess the usability of the data set for 200-PO-1 Groundwater OU RI/FS-related activities, including nature and extent, risk assessment, and remedial alternative evaluation.

2

This page intentionally left blank.

3 Scope

- 2 The DQA completes the data lifecycle (i.e., planning, implementation, and assessment) that was initiated
- 3 by the 200-PO-1 Groundwater OU RI/FS DQO process. A DQA report that evaluated groundwater
- 4 samples collected from the 200-PO-1 Groundwater OU over the period of October 2004 through
- 5 March 2009 was published in 2011 (SGW-41557). This report evaluates the requirements for the
- 6 sampling program found in the 200-PO-1 Groundwater OU RI/FS Work Plan (DOE/RL-2007-31).
- 7 The current DQA supplements the first DQA performed for the 200-PO-1 Groundwater OU RI/FS
- 8 described above. The data provided in this DQA include some groundwater samples evaluated in the
- 9 previous report (from 2008 through 2009) and an additional 4 years of samples collected after the scope
- of the work plan and SAP were fulfilled by the initial field investigation.
- 11 The DQA process involves the scientific evaluation of data to determine if the data are of the right type,
- 12 quality, and quantity to support the intended use. This DQA was performed in accordance with
- EPA/240/B-06/002 and EPA/240/B-06/003, Data Quality Assessment: Statistical Methods for
- 14 Practitioners (EPA QA/G-9S). The DQA methodology consists of the following steps:
- 1. **Data verification** is the process of evaluating the completeness, correctness, conformance, and compliance of a specific data set against the requirements developed through the systematic planning process. It includes confirmation that the specified sampling and analytical requirements have been completed. This includes verification that the number, type, and location of all samples identified in the SAP have been collected and that all required measurements and analyses were performed.
 - 2. **Data validation** is an analyte- and sample-specific process that extends the evaluation of data beyond method or contractual compliance (i.e., data verification) to determine the analytical quality of a specific data set. Data validation includes a determination, where possible, of the reasons for any failure to meet method, or contractual requirements, or QC requirements and an evaluation of the impact of such failure on the overall data set. It might include verification of required deliverables (e.g., minimum detection limits), verification of instrument calibrations, evaluation of analytical results based on method blanks, recovery of various internal standards, correctness of uncertainty calculations, identification and quantification of analytes, and the effect of quality deficiencies on the analytical sample data. Data validation is usually carried out on individual data packages (or sample delivery groups [SDGs]). However, for the purposes of this DQA, an electronic validation process is used and is based only on electronic deliverables received from the laboratories and conducted using a combination of automated and manual data review tools. An independent formal validation report was presented in SGW-41557.
 - 3. **Data usability** is a determination of the adequacy of the entire data set to support a particular environmental decision and is based upon the verification and validation results. The assessment relates to the adequacy of the entire data set to support a specific and defined data need. The usability step involves assessing whether the process execution and the resulting data meet project quality objectives documented in the DQO summary report and the associated SAPs.
- 38 The DQA procedure is not intended to be a definitive analysis of a project or problem. Instead, it provides
- an initial assessment of the reasonableness of the data that have been generated through a systematic
- 40 quality assurance (QA) and QC review process. This DQA focuses on the chemical and radionuclide
- 41 contaminant monitoring data collected by groundwater sampling at the 200-PO-1 Groundwater OU
- 42 between January 2008 and December 2013. The monitoring data have been examined to determine if they
- 43 meet the analytical quality criteria outlined in DOE/RL-2003-04 and to determine if the data are adequate
- 44 to support decision making.

20

21

22

23

24

25

2627

28

29

30

31

32

3334

35

36

- 1 The five-step DQA process described in EPA/240/B-06/002 must be followed when data are collected
- 2 specifically to perform a statistical test. However, groundwater data for the 200-PO-1 Groundwater OU
- 3 were collected to support RI/FS purposes and other activities such as monitoring which implements a
- 4 judgmental sampling design. As described in EPA/240/B-06/002, steps 3 and 4 of the EPA five-step
- 5 process do not apply when a judgmental sampling design is implemented. Although steps 3 and 4 are
- 6 listed in Table 3-1 they were not performed for this DQA. Table 3-1 presents a crosswalk between the
 - major sections in this DQA report and the EPA guidance document. This table shows how the elements of
- 8 the DQA are consistent with EPA guidance.

Table 3-1. Data Quality Assessment Crosswalk

DQA Report Section	EPA/240/B-06/002
4.0 Data Verification	Step 2, Conduct Preliminary Data Review
4.1 Project Objectives	Step 1, Review DQOs and Sampling Design
5.1 Analytical Requirements	Step 1, Review DQOs and Sampling Design
4.1 Sample Design	Step 1, Review DQOs and Sampling Design
5.0 Data Validation (Data Quality Evaluation)	Step 2, Conduct Preliminary Data Review
6.0 Data Quality Evaluation	Step 3, Select Statistical Test (not applicable)
7.0 Hanford Groundwater Report Review	Step 4, Verify the Assumptions (not applicable)
8.0 Field Quality Control	Step 5, Draw Conclusions from the Data

Source: EPA/240/B-06/002, Data Quality Assessment: A Reviewer's Guide (EPA QA/G-9R).

DQA = data quality assessment

DQO = data quality objective

4 Data Verification

- 2 This chapter describes the DQOs established and associated completeness for the 200-PO-1 Groundwater
- 3 OU. The data verification activities performed are also discussed.

4 4.1 Data Quality Objectives

- 5 The primary goals in developing DOOs for the 200-PO-1 Groundwater OU were to determine the
- 6 environmental measurements necessary to refine the conceptual site model describing the groundwater
- 7 contamination sources and the nature and extent of groundwater contamination, calculate exposure point
- 8 concentrations to support the baseline risk assessment (BRA), and support evaluation of remedial
- 9 alternatives. The primary question to be resolved was whether the data from the groundwater wells are of
- sufficient quality to be used in the RI/FS decision-making process. Within this larger question are the
- additional concerns for QC demonstrations, sufficiency of the data, quantity and circumstances of
- outliers, and data trends. The data set that addresses this question consists of the analytical data for those
- analytes identified as COPCs in the RI/FS Work Plan (DOE/RL-2007-31, Appendix A). The COPCs are
- 14 identified in Table 1-3.

1

- To ensure that these objectives would be met, the DQO process was used to evaluate data needs and
- develop the sampling design to collect the needed data (SGW-34011). Analytical parameters and
- 17 associated QC criteria were specified as part of the DQO process. The DQO results were used to develop
- 18 the SAP for the 200-PO-1 Groundwater OU RI, which was approved by EPA, the Washington State
- 19 Department of Ecology, and RL.

20 4.1.1 Completeness

32

- 21 Completeness objectives are documented in the DOA for the 200-PO-1 Groundwater OU (SGW-41557).
- 22 The report documents the outcome of the DQO process for the 200-PO-1 Groundwater OU. Chapter 4 of
- 23 SGW-41557 summarizes the completeness associated with the DQOs (problem statement, decision rules,
- 24 field OC requirements, and uncertainty limits) and the resulting sample design.
- 25 Section 4 of SGW-41557 concluded that the SAP (Appendix A of DOE/RL-2007-31) went into effect in
- October 2006. SGW-41557 assesses the completeness of the analytical data for samples from the
- 27 63 characterization wells for the period from the implementation of DOE/RL-2007-31, Appendix A to the
- 28 DOA initiation point, March 25, 2009. The sampling design within Appendix A of DOE/RL-2007-31 was
- 29 not fully implemented. The number of analyses completed relative to the number called for in
- 30 Appendix A of DOE/RL-2007-31 may represent an uncertainty associated with temporal or spatial
- 31 representativeness of the collected data set.

4.2 Data Verification Activities

- 33 As described in Chapter 3, data verification is the process of evaluating the completeness, correctness,
- 34 conformance, and compliance of a specific data set against the requirements developed through the
- 35 systematic planning process or as described in the relevant SAP. This process is conducted by Sample
- 36 Management and Reporting personnel prior to the data quality evaluation step of the DQA process.
- 37 Data verification activities are initiated upon receipt of three different types of data packages
- 38 (radiological screening data package, priority data package, and final data package). The activities that are
- 39 performed for all samples collected as part of the data verification process are summarized below:
- All groundwater samples collected and submitted to contracted laboratories are entered into the Sample and Data Tracking (SDT) system.
- Each data package is compared against the requested analyses in the SDT system:

- 1 Include all HEIS sample numbers assigned to the SDG, ensure that all requested analytical results are present, and ensure that the sampling authorization form number is correctly identified on the data package.
- 4 Resolve discrepancies by reviewing the chain-of-custody associated with the data package.
- 5 Notify the problem discrepancy reporting coordinator regarding data package discrepancies.
- 6 Update the data package status table with data package receipt date.
- 7 At a minimum, 25 percent of the final data packages received and processed by the Sample Management
- 8 and Reporting group are subjected to verification to ensure completeness and accuracy of the data
- 9 package, except for those that were generated throughout the request for data review (RDR) process.
- 10 The percentage of non-RDR data or data packages verified may vary in accordance with the number of
- problems and discrepancies that are being noted. If, at any time, there is an increase in problems and
- discrepancies, the percentage of verification can be increased as wells. The data verification steps that are
- performed on final data packages are listed in Table 4-1.
- Data verification activities are performed for all characterization and monitoring data collected for the
- Hanford Site. Results from these sample analyses are evaluated and compiled into an annual Hanford Site
- groundwater monitoring report. The report includes an appendix that provides an overview of the QA/QC
- information generated to support these programs. The results of the Hanford Groundwater Report review
- are summarized in Chapter 7 of this report.

Table 4-1. Summary of Data Verification Activities for Final Data Packages

Actionee	Step and Action					
Sample Management and Reporting group	Distribute final data package to data verifier.					
Data verifier	Receive the hardcopy data package.					
	Access the Sample Data Tracking system and initiate a verification "open" entry in the "Data Package Status" table.					
	Enter current date and initials in the provided columns.					
	Verify the following on the hardcopy data package:					
	Sample receipt documentation verification					
	a. Chain of custody forms are present					
	b. Sample authorization form numbers are correct					
	c. Sample receipt checklist (if applicable is present					
	d. Number of samples listed are correct					
	e. Problems noted during sample receipt are noted in narrative					
	f. Sample/analysis date/times are correct					
	Analytical data review					
	a. Sample holding times were not exceeded					
	b. Analyses date/time sequences are correct					
	c. Results are qualified/flagged appropriately					
	Narrative or cover letter evaluation					
	a. Number of samples provided is correct					
	b. Problems encountered during analyses are noted in narrative					
	c. Qualifiers/flags discussed when applicable					
	d. General information provided is correct/applicable					
	Quality control confirmation					
	a. Quality control recoveries are acceptable					
	b. Precision levels are acceptable					
	c. Tracers/carrier recoveries are acceptable					
	d. Accuracy is acceptable					
	Conduct a review of data received in an electronic data deliverable by comparing the analytical results found in the Hanford Environmental Information System database to the corresponding data package hardcopy analytical results.					

2

This page intentionally left blank.

5 Data Quality Evaluation

- 2 This chapter describes data quality evaluation activities that were performed for the 200-PO-1
- 3 Groundwater OU data set. It describes the analytical performance requirements, describes the laboratory
- 4 QA/QC criteria, and lists the documents that were used to guide the data quality evaluation activities.
- 5 Three additional activities were performed to determine the usability of the data set, including the
- 6 evaluation of detection limits, development and evaluation of data trend charts, and evaluation of annual
- 7 groundwater monitoring reports.

1

8

5.1 Laboratory Performance Requirements

- 9 Groundwater results are evaluated by comparing the electronic laboratory QC information to established
- 10 laboratory QC performance requirements.
- 11 Laboratory analytical performance requirements are listed in Tables 5-1 and 5-2. The analytical
- 12 performance requirements listed in Table 5-1 (radiological analytes) and Table 5-2 (chemicals) are
- provided for only those analytes identified as COPCs (see Table 1-3). Although uranium-234 and
- uranium-238 were identified as COPCs in the work plan and are listed in Table 5-2, groundwater samples
- were not analyzed for these radioisotopes.

Table 5-1. Groundwater Radiological Analytical Performance Requirements

СОРС	CAS Number	Background Value ^{a,b}	Comparison Value ^c (pCi/L)	MDL (pCi/L)	MS/MSD % RPD	MS/MSD % Recovery
		Rad	ionuclides			
Gross Alpha	12587-46-1	No value	15	3	≤30	70-130
Iodine-129	150-46-84-1	9.00E-07	1	1	≤30	70-130
Neptunium-237	13994-20-2	No value	15	1	≤30	70-130
Protactinium-231	14331-85-2	No value	_	1	≤30	70-130
Selenium-79	7782-49-2	No value	-	30	≤30	70-130
Strontium-90	10098-97-2	0.0010	8.0	2	≤30	70-130
Technetium-99	14133-76-7	0.83	900	15	≤30	70-130
Tritium	10028-17-8	119	20,000	400	≤30	70-130
Uranium-234	U-234	No value	_	1	≤30	70-130
Uranium-238	U-238	No value	_	1	≤30	70-130

a. DOE/RL-96-61, Hanford Site Background: Part 3, Groundwater Background.

CAS = Chemical Abstracts Service MS = matrix spike

COPC = contaminant of potential concern MSD = matrix spike duplicate

MDL = method detection limit

b. Represents activity levels from filtered groundwater samples; total concentrations from unfiltered samples are not available.

c. 40 CFR 141, "National Primary Drinking Water Regulations."

Table 5-2. Groundwater Chemical Analytical Performance Requirements

rable o 2. Groundwater oriention / that y trout i errormance requirements												
СОРС	CAS Number	Background ^a (μg/L)	Comparison Value ^b (µg/L)	MDL (μg/L)	LCS/LCSD % RPD	LCS/LCSD % Recovery	MS/MSD % RPD	MS/MSD % Recovery				
	Metals											
Antimony	7440-36-0	55	6.0	60/6	≤20 ^f	80-120 ^f	≤30	70-130				
Arsenic	7440-38-2	7.9	7.9	100/10	≤20 ^f	80-120 ^f	≤30	70-130				
Cadmium	7440-43-9	0.92	5.0/0.25	5/2	≤20 ^f	80-120 ^f	≤30	70-130				
Chromium (Total)	7440-47-3	2.4	100/65	10/2	≤20 ^f	80-120 ^f	≤30	70-130				
Lead	7439-92-1	0.92	15/2.1	50/5	≤20 ^f	80-120 ^f	≤30	70-130				
Manganese	7439-96-51	39	384	5	≤20 ^f	80-120 ^f	≤30	70-130				
Nickel	7440-02-0	1.6	100/52	40	≤20 ^f	80-120 ^f	≤30	70-130				
Thallium	7440-28-0	1.7	0.50	50/5	≤20 ^f	80-120 ^f	≤30	70-130				
Uranium	7440-61-1	9.9	30	0.08	≤20 ^f	80-120 ^f	≤30	70-130				
Vanadium	7440-62-2	12	80	25/10	≤20 ^f	80-120 ^f	≤30	70-130				
Zinc	7440-66-6	22	4,800/91	10	≤20 ^f	80-120 ^f	≤30	70-130				
	Inorganics											
Fluoride	16984-48-8	1,047	960	500	≤20 ^f	80-120 ^f	≤30	70-130				
Nitrate	14797-55-8	26,871	45,000	250	≤20 ^f	80-120 ^f	≤30	70-130				
Nitrite	14797-65-0	93.7	3,300	250	≤20 ^f	80-120 ^f	≤30	70-130				

able 5-2. Groundwater Chemical Analytical Performance Requirements

	200.15		Comparison	•							
COPC	CAS Number	Background ^a (μg/L)	Value ^b (μg/L)	MDL (μg/L)	LCS/LCSD % RPD	LCS/LCSD % Recovery	MS/MSD % RPD	MS/MSD % Recovery			
Volatile Organics											
1,1,2,2- Tetrachloreothane	630-20-6	N/A	0.22	5	≤20 ^f	Laboratory- specific	≤30	50-150			
1,2-Dichloroethane	107-06-2	N/A	0.48	5/1.5	≤20 ^f	Laboratory- specific	≤30	50-150			
1,4-Dioxane	123-91-1	N/A	0.44	500	≤20 ^f	Laboratory- specific	≤30	50-150			
Benzene	71-43-2	N/A	0.8	5/1.5	≤20 ^f	Laboratory- specific	≤30	50-150			
Bromodichloromethane	75-27-4	N/A	0.71	5	≤20 ^f	Laboratory- specific	≤30	50-150			
Dibromochloromethane	128-48-1	N/A	0.52	5	≤20 ^f	Laboratory- specific	≤30	50-150			
Hexane	110-54-3	N/A	480	5	≤20 ^f	Laboratory- specific	≤30	50-150			
Methylene Chloride	75-09-2	N/A	5.0	5	≤20 ^f	Laboratory- specific	≤30	50-150			
Tetrachloroethene	127-18-4	N/A	5	5	≤20 ^f	Laboratory- specific	≤30	50-150			
Trichloroethene	79-01-6	N/A	0.95	5(2)	≤20 ^f	Laboratory- specific	≤30	50-150			
Vinyl Chloride	75-01-4	N/A	_	10/5	≤20 ^f	Laboratory- specific	≤30	50-150			

Table 5-2. Groundwater Chemical Analytical Performance Requirements

СОРС	CAS Number	Background ^a (µg/L)	Comparison Value ^b (µg/L)	MDL (μg/L)	LCS/LCSD % RPD	LCS/LCSD % Recovery	MS/MSD % RPD	MS/MSD % Recovery			
Semivolatile Organics											
2,4-Dinitrophenol	51-28-5	N/A	32	25	≤20 ^f	Laboratory- specific	≤30	50-150			
Bis(2-ethylhexyl) phthalate	117-81-7	N/A	6.0	10	≤20 ^f	Laboratory- specific	≤30	50-150			
Dimethoate	60-51-5	N/A	3.2	20	≤20 ^f	Laboratory- specific	≤30	50-150			
Nitrobenzene	98-95-3	N/A	16	10	≤20 ^f	Laboratory- specific	≤30	50-150			
Pentachlorophenol	87-86-5	N/A	_	10	≤20 ^f	Laboratory- specific	≤30	50-150			
			Organochlor	ine Pesticides							
Dieldrin	60-57-1	N/A	0.0055/0/0019	0.1/0.05	≤20 ^f	Laboratory- specific	≤30	50-150			
Heptachlor	76-44-8	N/A	0.019/0.0038	0.05	≤20 ^f	Laboratory- specific	≤30	50-150			
Heptachlor Epoxide	1024-57-3	N/A	0.0048/0.0038	0.05	≤20 ^f	Laboratory- specific	≤30	50-150			

Table 5-2. Groundwater Chemical Analytical Performance Requirements

CAS Number	Background ^a Comparison Value ^b (μg/L) (μg/L)	MDL (μg/L)	LCS/LCSD % RPD	LCS/LCSD % Recovery	MS/MSD % RPD	MS/MSD % Recovery
------------	---	---------------	-------------------	------------------------	-----------------	----------------------

- a. DOE/RL-96-61, Hanford Site Background: Part 3, Groundwater Background.
- b. Represents concentrations from filtered groundwater samples; total concentrations from unfiltered samples are not available.
- c. The lowest value from:

40 CFR 141.62, "Maximum Contaminant Levels for Inorganic Contaminants."

WAC 173-201A, "Water Quality Standards for Surface Waters of the State of Washington."

WAC 173-340-720, "Model Toxics Control Act—Cleanup," "Ground Water Cleanup Standards."

WAC 173-340-900, "Tables."

WAC 246-290-310, "Group A Public Water Supplies," "Maximum Contaminant Levels (MCLs) and Maximum Residual Disinfectant Levels (MRDLs)."

- d. Precision and accuracy requirements are identified and defined in the referenced EPA procedures. Accuracy criteria are for associated batch MS percentage recoveries. Evaluations based on statistical control of LCS also are performed. Precision criteria are based on batch laboratory replicate MS sample analyses or replicate sample analyses.
- e. Accuracy criteria are the minimum for associated batch LCS percentage recoveries. Laboratories must meet statistically based control if more stringent. Additional analyte-specific evaluations also performed for MS and surrogates as appropriate to the method. Precision criteria as based on laboratory replicate MS sample analyses.
- f. For EPA Method 200.8, see EPA-600/R-94/111, *Methods for the Determination of Metals in Environmental Samples*, Supplement G. For EPA Methods 300.0, 335, and 353, see EPA-600/4-79-020, *Methods for Chemical Analysis of Water and Wastes*. For four-digit EPA methods, see SW-846, *Test Methods for Evaluating Solid Waste: Physical/Chemical Methods, Third Edition; Final Update IV-B*.
- f. Precision and accuracy criteria listed in this table are typically for soil samples; however, the appropriate criteria for water samples were used by the laboratories.

CAS = Chemical Abstracts Service MDL = method detection limit

COPC = contaminant of potential concern MS = matrix spike

EPA = U.S. Environmental Protection Agency MSD = matrix spike duplicate

LCS = laboratory control sample N/A = not applicable

LSCD = laboratory control sample duplicate RPD = relative percent difference

- 5.1.1 Laboratory Quality Assurance and Quality Control Requirements
- 2 The QA/QC requirements govern nearly all aspects of analytical laboratory operation, including
- 3 instrument procurement, maintenance, calibration, and operation. Laboratory requirements for internal
- 4 QC checks are performed as appropriate for the analytical method at a rate of one per sample per SDG or
- 5 one in 20 (5 percent), whichever is more frequent. Laboratory internal QC checks include the following:
- Laboratory contamination: Each analytical batch contains a laboratory (method) blank
- 7 (material of composition similar to that of the samples with known/minimal contamination of the
- 8 analytes of interest) carried through the complete analytical process. The method blank is used to
- 9 evaluate false-positive results in samples caused by contamination during handling at the laboratory.
- Analytical accuracy: For most analyses, a known quantity of representative analytes of interest
- (matrix spike [MS]) is added to a separate aliquot of a sample from the analytical batch. The known
- amount added is compared to the actual measured amount to calculate the percent recovery.
- The recovery percentage of the added MS is used to evaluate analytical accuracy. For analyses not
- amenable to MS techniques (e.g., gamma energy analysis [GEA]) or where analytical recovery is
- evaluated from recovery of the tracers or carriers, the accuracy of the laboratory preparation and
- analysis is evaluated via QC reference samples (e.g., laboratory control spike). In addition to the
- MS recovery, surrogate compounds are used to evaluate accuracy in the various organic analyses
- 18 (e.g., volatile organic compounds [VOCs], semivolatile organic compounds [SVOCs], etc.).
- Surrogate compounds with instrumental responses that are typical of the other analytes are added into
- the blanks, samples, and MSs, and the recovery is evaluated.
- Analytical precision: Separate aliquots removed from the sample containers (duplicate samples) are
- analyzed for each analytical batch for radionuclides and metals. The duplicate sample results are
- compared to the original sample results, which are evaluated as relative percent differences (RPDs)
- and are used to assess analytical precision. Alternately, a matrix spike duplicate (MSD) may be used
- for assessing precision of metals and organic parameters. For a MSD, a separate aliquot is removed
- from the same sample container and spike in the same manner as the MS. The results, not recoveries,
- from the MS/MSD are used to calculate a RPD and to assess precision.
- 28 Laboratory control sample (LCS) or QC reference sample (analytical accuracy): An LCS is
- 29 prepared from an independent standard at a concentration other than that used for calibration but
- 30 within the calibration range. The LCS is taken through all of the preparation and analysis steps used
- in the method. The LCS or OC reference sample measures the accuracy of the analytical process.
- 32 Depending on how it is introduced into the analysis, the LCS is sometimes referred to as a blank
- 33 spike sample.
- 34 In addition to the laboratory QA/QC requirements listed above, sensitivity criteria are also evaluated.
- 35 Sensitivity identifies any laboratory data that do not meet the SAP-required reporting limits and also
- 36 compares the results to applicable decision thresholds (e.g., comparison values).
- Laboratories are also subject to periodic and random audits of laboratory performance, systems, and
- 38 overall program. Audits check that the laboratories are performing to laboratory contract requirements.
- 39 No audits were performed with respect to the data analyses as part of this project.
- 40 5.1.2 Comparison Values
- 41 Comparison values are derived from readily available sources of chemical-specific applicable or relevant
- 42 and appropriate requirements (ARARs) or risk-based concentrations using default exposure assumptions.

- 1 Groundwater results obtained from monitoring wells located inland from the Columbia River are
- 2 compared to drinking water and groundwater cleanup standards developed for the protection of human
- 3 health. Groundwater results obtained from monitoring wells that have the potential to discharge to the
- 4 Columbia River (near-river) are compared to drinking water standards, groundwater cleanup standards,
- 5 and surface water quality standards and criteria developed for the protection of human health or
- 6 aquatic receptors.
- 7 The following sources identify the chemical-specific ARARs obtained from federal regulations:
- Maximum contaminant levels (MCLs), secondary MCLs, and non-zero MCL goals established under
 the Safe Drinking Water Act of 1974
- Ambient water quality criteria established under Section 304 or Section 303 of the *Clean Water* Act of 1977
- 12 The following sources identify chemical-specific ARARs obtained from Washington State regulations:
- WAC 173-340-720, "Model Toxics Control Act—Cleanup," "Ground Water Cleanup Standards"
- WAC 246-290-310, "Group A Public Water Supplies," "Maximum Contaminant Levels (MCLs) and
 Maximum Residual Disinfectant Levels (MRDLs)"
- WAC 173-201A, "Water Quality Standards for Surface Waters of the State of Washington"
- 17 The comparison values selected for the DQA process represent the lowest of the chemical-specific
- 18 ARARs or risk-based concentrations that are protective of human and aquatic receptors and that were
- 19 available at the time of the assessment. These comparison values, along with their basis, are provided in
- 20 Table 5-3.
- 21 5.1.3 Laboratory and Data Quality Evaluation Flags
- 22 During the generation of environmental analytical data, any of several qualification flags may be assigned
- 23 to an individual result. The HEIS database carries qualification flags applied by the laboratory and
- 24 through the validation process. Analytical data associated with this report show all of these applied
- 25 qualification flags. Potential flags and their meanings are provided in Table 5-4.

26 5.2 Data Quality Evaluation Review Process

- 27 The data quality evaluation process is an analyte- and sample-specific process that extends the evaluation
- 28 of the DQA described in Chapter 4. The main focus of data quality review is to determine the data quality
- 29 in terms of accomplishing the measurement quality objectives. Data quality review is generally performed
- 30 by person(s) independent of the activity which is being evaluated.
- 31 A formal data validation effort was not performed for the analytical data included in this DQA report.
- However, a formal validation report was submitted with the original DQA report submitted for the
- 33 200-PO-1 Groundwater OU (SGW-41557). Hardcopy data validation reports were not requested from the
- contracted laboratories; rather, a low-level data quality review process was performed to evaluate the
- 35 quality of the data set. This process is similar to the Stage 2A verification and validation described in
- 36 EPA 540-R-08-005, Guidance for Labeling Externally Validated Laboratory Analytical Data for
- 37 Superfund Use. Each laboratory electronically submits the following sample-related QC information for
- 38 each SDG:

- Dates and times of analysis
- Method blank or preparation blank results
- 3 Surrogate recoveries
- Deuterated monitoring compound recoveries
- 5 LCS recoveries
- Duplicate analyses RPD results
- 7 MS/MSD recoveries and RPD results
- 8 5.2.1 Guidance Documents
- 9 The following guidance documents were used for the data quality evaluation process:
- 10 EPA/240/B-06/002
- EPA/240/B-06/003
- EPA/240/R-02/004, Guidance on Environmental Data Verification and Data Validation
 (EPA QA/G-8)
- 14 EPA 540-R-08-005 (OSWER No. 9200.1-85)
- USEPA-540-R-08-01, National Functional Guidelines for Superfund Organic Methods Data Review
 (OSWER 9240.1-48)
- USEPA-540-R-10-011, National Functional Guidelines for Inorganic Superfund Data Review
 (OSWER 9240.1-51)
- EPA-540-R-11-016, National Functional Guidelines for Chlorinated Dibenzo-p-Dioxins (CDDs) and Chlorinated Dibenzofurans (CDFs) Data Review (OSWER 9240.1-53)

Table 5-3. List of Target Analytes with Comparison Values for the 200-PO-1 Groundwater OU

Human Health Comparison				in Companson values for the 200-PO-1 Groundwar	Human Health and Aquatic	
Analyte Name	CAS Number	Units	Value	Comparison Level Basis	Comparison Value	Comparison Level Basis
1,1,2,2-Tetrachloroethane	630-20-6	μg/L	0.22	WAC 173-340-720(4)(b)(iii)(A) and (B)	0.22	WAC 173-340-720(4)(b)(iii)(A) and (B)
1,1,1-Trichloroethane	71-55-6	μg/L	200	WAC 173-340-720(4)(b)(iii)(A) and (B)	200	WAC 173-340-720(4)(b)(iii)(A) and (B)
1,1-Dichloroethane	75-34-3	μg/L	7.7	WAC 173-340-720(4)(b)(iii)(A) and (B)	7.7	WAC 173-340-720(4)(b)(iii)(A) and (B)
1,1-Dichloroethene	75-35-4	μg/L	7.0	WAC 173-340-720(4)(b)(iii)(A) and (B)	7.0	WAC 173-340-720(4)(b)(iii)(A) and (B)
1,2,3,4,6,7,8-Heptachlorodibenzodioxin	35822-46-9	μg/L	6.73E-05	WAC 173-340-720(4)(b)(iii)(A) and (B)	6.73E-05	WAC 173-340-720(4)(b)(iii)(A) and (B)
1,2,3,4,6,7,8-Heptachlorodibenzofuran	67562-39-4	μg/L	6.73E-05	WAC 173-340-720(4)(b)(iii)(A) and (B)	6.73E-05	WAC 173-340-720(4)(b)(iii)(A) and (B)
1,2,3,4,7,8,9-Heptachlorodibenzofuran	55673-89-7	μg/L	6.73E-05	WAC 173-340-720(4)(b)(iii)(A) and (B)	6.73E-05	WAC 173-340-720(4)(b)(iii)(A) and (B)
1,2,3,4,7,8-Hexachlorodibenzofuran	70648-26-9	μg/L	6.73E-06	WAC 173-340-720(4)(b)(iii)(A) and (B)	6.73E-06	WAC 173-340-720(4)(b)(iii)(A) and (B)
1,2,3,4,7,8-Hexachlorodibenzo-p-dioxin	39227-28-6	μg/L	6.73E-06	WAC 173-340-720(4)(b)(iii)(A) and (B)	6.73E-06	WAC 173-340-720(4)(b)(iii)(A) and (B)
1,2,3,6,7,8-Hexachlorodibenzofuran	57117-44-9	μg/L	6.73E-06	WAC 173-340-720(4)(b)(iii)(A) and (B)	6.73E-06	WAC 173-340-720(4)(b)(iii)(A) and (B)
1,2,3,6,7,8-Hexachlorodibenzo-p-dioxin	57653-85-7	μg/L	6.73E-06	WAC 173-340-720(4)(b)(iii)(A) and (B)	6.73E-06	WAC 173-340-720(4)(b)(iii)(A) and (B)
1,2,3,7,8,9-Hexachlorodibenzofuran	72918-21-9	μg/L	6.73E-06	WAC 173-340-720(4)(b)(iii)(A) and (B)	6.73E-06	WAC 173-340-720(4)(b)(iii)(A) and (B)
1,2,3,7,8,9-Hexachlorodibenzo-p-dioxin	19408-74-3	μg/L	6.73E-06	WAC 173-340-720(4)(b)(iii)(A) and (B)	6.73E-06	WAC 173-340-720(4)(b)(iii)(A) and (B)
1,2,3,7,8-Pentachlorodibenzofuran	57117-41-6	μg/L	2.24E-05	WAC 173-340-720(4)(b)(iii)(A) and (B)	2.24E-05	WAC 173-340-720(4)(b)(iii)(A) and (B)
2,3,4,6,7,8-Hexachlorodibenzofuran	40321-76-4	μg/L	6.73E-06	WAC 173-340-720(4)(b)(iii)(A) and (B)	6.73E-06	WAC 173-340-720(4)(b)(iii)(A) and (B)
2,3,4,7,8-Pentachlorodibenzofuran	57117-31-4	μg/L	2.24E-06	WAC 173-340-720(4)(b)(iii)(A) and (B)	2.24E-06	WAC 173-340-720(4)(b)(iii)(A) and (B)
1,2-Dichloroethane	107-06-2	μg/L	0.48	WAC 173-340-720(4)(b)(iii)(A) and (B)	0.48	WAC 173-340-720(4)(b)(iii)(A) and (B)
1,4-Dichlorobenzene	106-46-7	μg/L	8.1	WAC 173-340-720(4)(b)(iii)(A) and (B)	8.1	WAC 173-340-720(4)(b)(iii)(A) and (B)
1,4-Dioxane	123-91-1	μg/L	0.44	WAC 173-340-720(4)(b)(iii)(A) and (B)	0.44	WAC 173-340-720(4)(b)(iii)(A) and (B)
2,4-Dinitrophenol	51-28-5	μg/L	32	WAC 173-340-720(4)(b)(iii)(A) and (B)	32	WAC 173-340-720(4)(b)(iii)(A) and (B)
2,6-Dinitrotoluene	606-20-2	μg/L	16	WAC 173-340-720(4)(b)(iii)(A) and (B)	16	WAC 173-340-720(4)(b)(iii)(A) and (B)
2-Hexanone	591-78-6	μg/L	40	WAC 173-340-720(4)(b)(iii)(A) and (B)	40	WAC 173-340-720(4)(b)(iii)(A) and (B)
Acetone	67-64-1	μg/L	7,200	WAC 173-340-720(4)(b)(iii)(A) and (B)	7,200	WAC 173-340-720(4)(b)(iii)(A) and (B)
Acetophenone	98-86-2	μg/L	800	WAC 173-340-720(4)(b)(iii)(A) and (B)	800	WAC 173-340-720(4)(b)(iii)(A) and (B)
Acrolein	107-02-8	μg/L	4	WAC 173-340-720(4)(b)(iii)(A) and (B)	3.0	Clean Water Act, freshwater CCC
Aluminum	7429-90-5	μg/L	16,000	WAC 173-340-720(4)(b)(iii)(A) and (B)	87	Clean Water Act, freshwater CCC
Americium-241	14596-10-2	pCi/L	15	40 CFR 141, federal MCL	15	40 CFR 141, federal MCL
Antimony	7440-36-0	μg/L	6.0	40 CFR 141, federal MCL	6.0	40 CFR 141, federal MCL
Arsenic	7440-38-2	μg/L	7.9	DOE/RL-96-61, Table ES-1	7.9	DOE/RL-96-61, Table ES-1
Barium	7440-39-3	μg/L	2,000	40 CFR 141, federal MCL	2,000	40 CFR 141, federal MCL
Benzene	71-43-2	μg/L	0.8	WAC 173-340-720(4)(b)(iii)(A) and (B)	0.8	WAC 173-340-720(4)(b)(iii)(A) and (B)

Table 5-3. List of Target Analytes with Comparison Values for the 200-PO-1 Groundwater OU

Analyte Name	CAS Number	Units	Human Health Comparison Value	Comparison Level Basis	Human Health and Aquatic Comparison Value	Comparison Level Basis
Benzyl Alcohol	100-51-6	μg/L	800	WAC 173-340-720(4)(b)(iii)(A) and (B)	800	WAC 173-340-720(4)(b)(iii)(A) and (B)
Beryllium	7440-41-7	μg/L	4.0	40 CFR 141, federal MCL	4.0	40 CFR 141, federal MCL
Bis(2-ethylhexyl) phthalate	117-81-7	μg/L	6.0	40 CFR 141, federal MCL	6.0	40 CFR 141, federal MCL
Boron	7440-42-8	μg/L	3,200	WAC 173-340-720(4)(b)(iii)(A) and (B)	3,200	WAC 173-340-720(4)(b)(iii)(A) and (B)
Bromodichloromethane	75-27-4	μg/L	0.71	WAC 173-340-720(4)(b)(iii)(A) and (B)	0.71	WAC 173-340-720(4)(b)(iii)(A) and (B)
Bromoform	75-25-2	μg/L	5.5	WAC 173-340-720(4)(b)(iii)(A) and (B)	5.5	WAC 173-340-720(4)(b)(iii)(A) and (B)
Bromomethane	74-83-9	μg/L	11	WAC 173-340-720(4)(b)(iii)(A) and (B)	11	WAC 173-340-720(4)(b)(iii)(A) and (B)
Butylbenzylphthalate	85-68-7	μg/L	46	WAC 173-340-720(4)(b)(iii)(A) and (B)	46	WAC 173-340-720(4)(b)(iii)(A) and (B)
Cadmium	7440-43-9	μg/L	5	40 CFR 141, federal MCL	0.25	Clean Water Act Freshwater CCC
Carbon Disulfide	75-15-0	μg/L	800	WAC 173-340-720(4)(b)(iii)(A) and (B)	800	WAC 173-340-720(4)(b)(iii)(A) and (B)
Carbon Tetrachloride	56-23-5	μg/L	0.625	WAC 173-340-720(4)(b)(iii)(A) and (B)	0.63	WAC 173-340-720(4)(b)(iii)(A) and (B)
Carbon-14	14762-75-5	pCi/L	2,000	40 CFR 141, federal MCL	2,000	40 CFR 141, federal MCL
Cesium-137	10045-97-3	pCi/L	200	40 CFR 141, federal MCL	200	40 CFR 141, federal MCL
Chloride	16887-00-6	μg/L	250,000	40 CFR 141, federal MCL	250,000	40 CFR 141, federal MCL
Chloroform	67-66-3	μg/L	1.4	WAC 173-340-720(4)(b)(iii)(A) and (B)	1.4	WAC 173-340-720(4)(b)(iii)(A) and (B)
Chromium	7440-47-3	μg/L	100	40 CFR 141, federal MCL	65	Clean Water Act, freshwater CCC
Cobalt	7440-48-4	μg/L	4.8	WAC 173-340-720(4)(b)(iii)(A) and (B)	4.8	WAC 173-340-720(4)(b)(iii)(A) and (B)
Cobalt-60	10198-40-0	pCi/L	100	40 CFR 141, federal MCL	100	40 CFR 141, federal MCL
Copper	7440-50-8	μg/L	640	WAC 173-340-720(4)(b)(iii)(A) and (B)	9	Clean Water Act, freshwater CCC
Cyanide	57-12-5	μg/L	4.8	WAC 173-340-720(4)(b)(iii)(A) and (B)	4.8	WAC 173-340-720(4)(b)(iii)(A) and (B)
Dibromochloromethane	128-48-1	μg/L	0.52	WAC 173-340-720(4)(b)(iii)(A) and (B)	0.52	WAC 173-340-720(4)(b)(iii)(A) and (B)
Dieldrin	60-57-1	μg/L	0.0055	WAC 173-340-720(4)(b)(iii)(A) and (B)	0.0019	40 CFR 131, freshwater CCC
Dimethoate	60-51-5	μg/L	3.2	WAC 173-340-720(4)(b)(iii)(A) and (B)	3.2	WAC 173-340-720(4)(b)(iii)(A) and (B)
Ethyl Methacrylate	97-63-2	μg/L	720	WAC 173-340-720(4)(b)(iii)(A) and (B)	720	WAC 173-340-720(4)(b)(iii)(A) and (B)
Ethylbenzene	100-41-4	μg/L	4.0	WAC 173-340-720(4)(b)(iii)(A) and (B)	4.0	WAC 173-340-720(4)(b)(iii)(A) and (B)
Europium-154	15585-10-1	pCi/L	60	40 CFR 141, federal MCL	60	40 CFR 141, federal MCL
Europium-155	14391-16-3	pCi/L	600	40 CFR 141, federal MCL	600	40 CFR 141, federal MCL
Fluoride	16984-48-8	μg/L	960	WAC 173-340-720(4)(b)(iii)(A) and (B)	960	WAC 173-340-720(4)(b)(iii)(A) and (B)
Gross Alpha	12587-46-1	pCi/L	15	40 CFR 141, federal MCL	15	40 CFR 141, federal MCL
Hexavalent Chromium	18540-29-9	μg/L	48	WAC 173-340-720(4)(b)(iii)(A) and (B)	10	40 CFR 141, freshwater CCC
Heptachlor	76-44-8	μg/L	0.019	WAC 173-340-720(4)(b)(iii)(A) and (B)	0.0038	40 CFR 131, freshwater CCC

Table 5-3. List of Target Analytes with Comparison Values for the 200-PO-1 Groundwater OU

Analyte Name	CAS Number	Units	Human Health Comparison Value	Comparison Level Basis	Human Health and Aquatic Comparison Value	Comparison Level Basis
Heptachlor Epoxide	1024-57-3	μg/L	0.0048	WAC 173-340-720(4)(b)(iii)(A) and (B)	0.0038	40 CFR 131, freshwater CCC
Hexane	110-54-3	μg/L	480	WAC 173-340-720(4)(b)(iii)(A) and (B)	480	WAC 173-340-720(4)(b)(iii)(A) and (B)
Iodine-129	150-46-84-1	pCi/L	1	40 CFR 141, federal MCL	1	40 CFR 141, federal MCL
Iron	7439-89-6	μg/L	11,200	WAC 173-340-720(4)(b)(iii)(A) and (B)	1,000	Clean Water Act, freshwater CCC
Lead	7439-92-1	μg/L	15	40 CFR 141, federal MCL	2.1	WAC 173-201A
Lithium	7439-93-2	μg/L	32	WAC 173-340-720(4)(b)(iii)(A) and (B)	32	WAC 173-340-720(4)(b)(iii)(A) and (B)
Manganese	7439-96-5	μg/L	384	WAC 173-340-720(4)(b)(iii)(A) and (B)	384	WAC 173-340-720(4)(b)(iii)(A) and (B)
Mercury	7487-94-7	μg/L	2	40 CFR 141, federal MCL	0.012	40 CFR 131, freshwater CCC
Methyl Methacrylate	80-62-6	μg/L	11,200	WAC 173-340-720(4)(b)(iii)(A) and (B)	11,200	WAC 173-340-720(4)(b)(iii)(A) and (B)
Methyl Methanesulfonate	66-27-3	μg/L	0.88	WAC 173-340-720(4)(b)(iii)(A) and (B)	0.88	WAC 173-340-720(4)(b)(iii)(A) and (B)
Methylene Chloride	75-09-2	μg/L	5.0	40 CFR 141, federal MCL	5.0	40 CFR 141, federal MCL
Molybdenum	7439-98-7	μg/L	80	WAC 173-340-720(4)(b)(iii)(A) and (B)	80	WAC 173-340-720(4)(b)(iii)(A) and (B)
Neptunium-237	13994-20-2	pCi/L	15	40 CFR 141, federal MCL	15	40 CFR 141, federal MCL
Nickel	7440-02-0	μg/L	100	40 CFR 141, federal MCL	52	Clean Water Act, freshwater CCC
Nitrate	14797-55-8	μg/L	45,000	40 CFR 141, federal MCL	45,000	40 CFR 141, federal MCL
Nitrite	14797-65-0	μg/L	3,300	40 CFR 141, federal MCL	3,300	40 CFR 141, federal MCL
Nitrobenzene	98-95-3	μg/L	16	WAC 173-340-720(4)(b)(iii)(A) and (B)	16	WAC 173-340-720(4)(b)(iii)(A) and (B)
n-Nitrosodi-n-dipropylamine	621-64-7	μg/L	0.013	WAC 173-340-720(4)(b)(iii)(A) and (B)	0.013	WAC 173-340-720(4)(b)(iii)(A) and (B)
Octachlorodibenzofuran	39001-02-0	μg/L	2.24E-03	WAC 173-340-720(4)(b)(iii)(A) and (B)	2.24E-03	WAC 173-340-720(4)(b)(iii)(A) and (B)
Octachlorodibenzo-p-dioxin	3268-87-9	μg/L	2.24E-03	WAC 173-340-720(4)(b)(iii)(A) and (B)	2.24E-03	WAC 173-340-720(4)(b)(iii)(A) and (B)
Pentachlorphenol	87-86-5	μg/L	0.22	WAC 173-340-720(4)(b)(iii)(A) and (B)	0.22	WAC 173-340-720(4)(b)(iii)(A) and (B)
Phenol	108-95-2	μg/L	2,400	WAC 173-340-720(4)(b)(iii)(A) and (B)	2,400	WAC 173-340-720(4)(b)(iii)(A) and (B)
Plutonium-238	13981-16-3	pCi/L	15	40 CFR 141, federal MCL	15	40 CFR 141, federal MCL
Plutonium-239/240	PU-239/240	pCi/L	15	40 CFR 141, federal MCL	15	40 CFR 141, federal MCL
Protactinium-231	14331-85-2	pCi/L	15	40 CFR 141, federal MCL	15	40 CFR 141, federal MCL
Selenium	7782-49-2	μg/L	80	WAC 173-340-720(4)(b)(iii)(A) and (B)	5.0	Clean Water Act Freshwater CCC
Selenium-79	7782-49-2	pCi/L	7.3	EPA Method 2013-	7.3	EPA Method 2013-
Silver	7440-22-4	μg/L	80	WAC 173-340-720(4)(b)(iii)(A) and (B)	2.6	WAC 173-201A
Strontium	7440-24-6	μg/L	9,600	WAC 173-340-720(4)(b)(iii)(A) and (B)	9,600	WAC 173-340-720(4)(b)(iii)(A) and (B)
Strontium-90	10098-97-2	pCi/L	8.0	40 CFR 141, federal MCL	8.0	40 CFR 141, federal MCL

Table 5-3. List of Target Analytes with Comparison Values for the 200-PO-1 Groundwater OU

Analyte Name	CAS Number	Units	Human Health Comparison Value	Comparison Level Basis	Human Health and Aquatic Comparison Value	Comparison Level Basis
Styrene	100-42-5	μg/L	1,600	WAC 173-340-720(4)(b)(iii)(A) and (B)	1,600	WAC 173-340-720(4)(b)(iii)(A) and (B)
Sulfate	14808	μg/L	250,000	40 CFR 141, secondary MCL	250,000	40 CFR 141, secondary MCL
Technetium-99	14133-76-7	pCi/L	900	40 CFR 141, federal MCL	900	40 CFR 141, federal MCL
Tetrachloroethene	127-18-4	μg/L	5	40 CFR 141, federal MCL	5.0	40 CFR 141, federal MCL
Thallium	7440-28-0	μg/L	0.5	40 CFR 141, federal MCLG	0.50	40 CFR 141, federal MCLG
Tin	7440-31-5	μg/L	9,600	WAC 173-340-720(4)(b)(iii)(A) and (B)	9,600	WAC 173-340-720(4)(b)(iii)(A) and (B)
Toluene	108-88-3	μg/L	640	WAC 173-340-720(4)(b)(iii)(A) and (B)	640	WAC 173-340-720(4)(b)(iii)(A) and (B)
Total Petroleum Hydrocarbons-Diesel Range	TPHDIESEL	μg/L	500	WAC 173-340-900, Table 720-1	500	WAC 173-340-900, Table 720-1
Tributyl Phosphate	126-73-8	μg/L	9.72	WAC 173-340-720(4)(b)(iii)(A) and (B)	9.72	WAC 173-340-720(4)(b)(iii)(A) and (B)
Trichloroethene	79-01-6	μg/L	0.951	WAC 173-340-720(4)(b)(iii)(A) and (B)	0.951	WAC 173-340-720(4)(b)(iii)(A) and (B)
Trichloromonofluorometahne	75-69-4	μg/L	2,400	WAC 173-340-720(4)(b)(iii)(A) and (B)	2,400	WAC 173-340-720(4)(b)(iii)(A) and (B)
Tritium	10028-17-8	pCi/L	20,000	40 CFR 141, federal MCL	20,000	40 CFR 141, federal MCL
Uranium	7440-61-1	μg/L	30	40 CFR 141, federal MCL	30	40 CFR 141, federal MCL
Uranium-234	U-234	pCi/L	No value	_	No value	_
Uranium-238	U-238	pCi/L	No value	_	No value	-
Vanadium	7440-62-2	μg/L	80	WAC 173-340-720(4)(b)(iii)(A) and (B)	80	WAC 173-340-720(4)(b)(iii)(A) and (B)
Vinyl Chloride	75-01-4	μg/L	0.061	WAC 173-340-720(4)(b)(iii)(A) and (B)	0.061	WAC 173-340-720(4)(b)(iii)(A) and (B)
Xylenes (Total)	1330-20-7	μg/L	1,600	WAC 173-340-720(4)(b)(iii)(A) and (B)	1,600	WAC 173-340-720(4)(b)(iii)(A) and (B)
Zinc	7440-66-6	μg/L	4,800	WAC 173-340-720(4)(b)(iii)(A) and (B)	91	WAC 173-201A

Note: Shading denotes those analytes that were identified as COPCs in the Remedial Investigation/Feasibility Study Work Plan for the 200-PO-1 Groundwater Operable Unit (DOE/RL-2007-31, Appendix A).

40 CFR 141.61, "National Primary Drinking Water Regulations," "Maximum Contaminant Levels for Organic Contaminants."

40 CFR 141.62, "Maximum Contaminant Levels for Inorganic Contaminants."

40 CFR 141.66, "Maximum Contaminant Levels for Radionuclides."

40 CFR 143.3, "National Secondary Drinking Water Regulations," "Secondary Maximum Contaminant Levels."

DOE/RL-96-61, Hanford Site Background: Part 3, Groundwater Background.

WAC 173-201A, "Water Quality Standards for Surface Waters of the State of Washington."

WAC 173-340-720, "Model Toxics Control Act—Cleanup," "Ground Water Cleanup Standards."

WAC 173-340-900, "Tables."

WAC 246-290-310, "Group A Public Water Supplies," "Maximum Contaminant Levels (MCLs) and Maximum Residual Disinfectant Levels (MRDLs)."

CAS = Chemical Abstracts Service MCL = maximum contaminant level

CCC = criterion continuous concentration MCLG = maximum contaminant level guideline

EPA = U.S. Environmental Protection Agency

Table 5-4. Data Qualification Flags

Flag	Definition				
	Laboratory-Applied Flags				
В	Inorganics and Wetchem*: The analyte was detected at a value less than the contract-required detection limit but greater than or equal to the MDL. The data should be considered usable for decision-making purposes.				
	Organics: The analyte was detected in both the associated QC blank and in the sample. Radionuclides: The associated QC sample blank has a result greater than or equal to two times the MDA and, after corrections, result is greater than or equal to the MDA for this sample.				
С	Inorganics and Wetchem: The analyte was detected in both the sample and the associated QC blank, and the sample concentration was less than or equal to five times the blank concentration. The data should be considered unusable for decision-making purposes.				
D	Inorganics and Wetchem: The analyte was detected in both the sample and the associated QC blank, and the sample concentration was less than or equal to five times the blank concentration. The data should be considered unusable for decision-making purposes.				
Е	Inorganics: Reported value is estimated because of interference. See any comments that may be in the laboratory report case narrative. Organics: Concentration exceeds the calibration range of for gas chromatography/mass spectrometry (GC/MS).				
N	All: The spike sample recovery is outside control limits. The data should be considered usable for decision-making purposes.				
J	Organics: Indicates the constituent was analyzed for and detected. The associated value is estimated because of a QC deficiency identified during data validation. The data should be considered usable for decision-making purposes.				
О	One or more QC criteria have not been met. Please see the applicable case narrative or data exception report for details.				
Q	Organics – dioxins and PCB congeners only: Estimated maximum concentration. Used if one of the qualitative identification criteria is not met (e.g., Cl isotopic rations outside theoretical range).				
T	Organics – GC/MS only: Spike and/or spike duplicate sample recovery is outside control limits.				
U	All: The constituent was analyzed for and was not detected. The data should be considered usable for decision-making purposes.				
X	All: The result-specific translation of this qualifier code is provided in the data report and/or case narrative.				
	Data Verification Applied Flags				
U	The constituent was analyzed for but was not detected. The data should be considered usable for decision making purposes.				
UJ	The constituent was analyzed for and was not detected. Because of a QC deficiency identified during data validation, the value reported may not accurately reflect the reporting limit. The data should be considered usable for decision making purposes.				
J	Indicates that the constituent was analyzed for and was detected. The associated value is estimated because of a QC deficiency identified during data validation. The data should be considered usable for decision making purposes.				

Table 5-4. Data Qualification Flags

Flag	Definition			
J+	Indicates that the constituent was analyzed for and was detected. The associated value is estimated with a suspected positive bias because of a QC deficiency identified during data validation. The data should be considered usable for decision making purposes.			
J-	Indicates that the constituent was analyzed for and was detected. The associated value is estimated with a suspected negative bias because of a QC deficiency identified during data validation. The data should be considered usable for decision making purposes.			
R	Indicates that the constituent was analyzed for and was detected; however, because of an identified QC deficiency the data should be considered unusable for decision making purposes.			
UJ	UJ Indicates that the constituent was analyzed for and was not detected. Because of a QC deficiency identified during data validation, the value reported may not accurately reflect the MDL. The data should be considered usable for decision making purposes.			
UR	Indicates that the constituent was analyzed for and was not detected; however, because of an identified QC deficiency the data should be considered unusable for decision making purposes.			

^{*} Wetchem is a group of analytical methods that do not use instrumentation but are associated with "wet" chemical reactions.

GC/MS	=	gas chromatography/mass spectrometry	PCB	=	polychlorinated biphenyl
MDA	=	minimum detectable activity	QC	=	quality control
MDL	=	method detection limit			

6 Data Quality Evaluation Results

- 2 This chapter summarizes the review of the laboratory QC information that is associated with the
- 3 200-PO-1 groundwater OU data set from the past six years. Laboratory contamination (Section 6.1),
- 4 laboratory precision (Section 6.2), laboratory accuracy (Section 6.3), and the sensitivity analysis
- 5 (Section 6.4) are discussed in this chapter. As discussed in Chapter 3 of this report, the purpose of Step 5
- of the DQA process is to draw conclusions from the data. Steps 3 and 4 of the DQA process were not
- 7 applicable because groundwater data for the 200-PO-1 Groundwater OU were collected using a
- 8 judgmental sample design. As such, the results presented in Chapters 6, 7, and 8 are used to draw
- 9 conclusions about the usability of the data.
- The data set consists of 146,342 laboratory QC results. This includes 35,744 laboratory blanks
- 11 (preparation or method blanks), 6,033 laboratory duplicate pairs, 30,479 LCSs, 49,868 MSs, and
- 12 24,218 individual surrogate results. The laboratory QC elements were evaluated against the criteria listed
- 13 in Table 6-1.

1

Table 6-1. Laboratory Quality Control Acceptance Criteria

QC Element	Acceptance Criteria
Laboratory Blanks	For general chemical parameters, ammonia, anions, metals, and volatile organic compounds, the laboratory blank limit is the MDL, IDL, or MDA. However, for semivolatile organic compounds, the QC limit is two times the MDL. For radiochemical constituents, the QC limit is two times the MDA.
Laboratory Duplicates	Laboratory duplicates with at least one result greater than or equal to five times the MDL or MDA must have an RPD less than or equal to 20 to be considered acceptable.
Laboratory Control Samples	Laboratory control sample percent recovery must be between the laboratory-provided minimum control limit and maximum control limit.
Laboratory Spikes	Laboratory spikes where the sample result is less than or equal to four times the spiking concentration are evaluated by comparing the percent recovery with the minimum and maximum control limits provided by the laboratory. In addition, where the sample result is less than or equal to four times the spiking concentration, the MS/MSD must have an RPD less than or equal to 20 percent.

 IDL
 = instrument detection limit
 MSD
 = matrix spike duplicate

 MDA
 = minimum detectable activity
 QC
 = quality control

 MDL
 = method detection limit
 RPD
 = relative percent difference

 MS
 = matrix spike

14

15

6.1 Laboratory Contamination

- Hanford Site laboratory contracts require that laboratory method blanks be analyzed with each batch of up
- to 20 samples (minimum 5 percent frequency). In total, 37,028 laboratory results were reported with the
- laboratory QC associated with the 200-PO-1 Groundwater OU data set. This represents 25.8 percent of
- 19 the total number of sample results.
- 20 Of these 37,028 laboratory results, 69 individual analytes reported an unacceptable positive result,
- indicating potential laboratory contamination. In total, 7,684 laboratory blank results were associated with

- these 69 analytes. Of these results, 516 or 1.4 percent reported an unacceptable positive result, indicating
- 2 potential laboratory contamination.
- 3 Table 6-2 lists the total number of laboratory blanks reported with the 200-PO-1 OU groundwater
- 4 data set by analyte class. Table 6-3 shows the distribution of analytes with potential laboratory
- 5 contamination in laboratory blank results exceeding QC criteria. Of the 69 analytes, ammonium ion,
- 6 1,2,3,6,7,8-hexachlorodibenzo-p-dioxin, 1,2,3,7,8,9-hexachlorodibenzofuran,
- 7 1,2,3,7,8,9-hexachlorodibenzo-p-dioxin, 1,2,3,7,8-pentachlorodibenzofuran, 1,2,3,7,8-
- 8 pentachlorodibenzo-p-dioxin, 2,3,4,6,7,8-hexachlorodibenzofuran, 2,3,4,7,8-pentachlorodibenzofuran,
- 9 heptachlorodibenzofurans, heptachlorodibenzo-p-dioxins, hexachlorodibenzofurans,
- 10 hexachlorodibenzo-p-dioxin, octachlorodibenzofuran, octachlorodibenzo-p-dioxin,
- pentachlorodibenzofurans, and pentachlorodibenzo-p-dioxins all had 100 percent of their results out of
- 12 limits.

Table 6-2. Total Laboratory Blank Results by Analyte Class

Analyte Class	Results			
Anions	3,322			
General Chemistry	639			
Metals	10,871			
Radiochemistry	2,737			
Semivolatile Organic Compounds	4,637			
Volatile Organic Compounds	14,822			
Total	37,028			

Table 6-3. Distribution of Contamination in Laboratory Blank Results Exceeding QC Criteria

Analyte Name	Analyte Class	Total Collected	Total Results Out of Limits ^a	Percent Out of Limits
Ammonium Ion	Anions	1	1	100
Chloride	Anions	21	3	14.3
Fluoride	Anions	137	4	2.9
Nitrogen in Nitrate	Anions	151	7	4.6
Sulfate	Anions	136	4	2.9
Chemical Oxygen Demand	General chemistry	4	1	25
Total Organic Carbon	General chemistry	123	8	6.5
Total Organic Halides	General chemistry	30	9	30
Aluminum	Metals	88	3	3.4

Table 6-3. Distribution of Contamination in Laboratory Blank Results Exceeding QC Criteria

Analyte Name	Analyte Class	Total Collected	Total Results Out of Limits ^a	Percent Out of Limits
Antimony	Metals	274	6	2.2
Arsenic	Metals	208	7	3.4
Bismuth	Metals	51	3	5.9
Boron	Metals	51	2	3.9
Calcium	Metals	484	39	8.1
Chromium	Metals	298	8	2.7
Copper	Metals	320	15	4.7
Iron	Metals	485	33	6.8
Lead	Metals	102	1	0.98
Magnesium	Metals	467	44	9.4
Manganese	Metals	189	3	1.6
Molybdenum	Metals	88	2	2.3
Nickel	Metals	377	9	2.4
Phosphorus	Metals	51	3	5.9
Potassium	Metals	339	32	9.4
Selenium	Metals	88	3	3.4
Silicon	Metals	51	11	21.6
Silver	Metals	363	32	8.8
Sodium	Metals	498	88	17.7
Strontium	Metals	84	3	3.6
Thallium	Metals	90	3	3.3
Uranium	Metals	3	1	33.3
Vanadium	Metals	242	6	2.5
Zinc	Metals	393	17	4.3
Gross Alpha	Radiochemistry	61	1	1.6
Gross Beta	Radiochemistry	62	2	3.2
Iodine-129	Radiochemistry	43	2	4.7
Potassium-40	Radiochemistry	4	1	25
Strontium-90	Radiochemistry	21	2	9.5

Table 6-3. Distribution of Contamination in Laboratory Blank Results Exceeding QC Criteria

Analyte Name	Analyte Class	Total Collected	Total Results Out of Limits ^a	Percent Out of Limits
Uranium-234	Radiochemistry	2	1	50
1,2,3,6,7,8-Hexachlorodibenzo-p-dioxin	Dioxin/furan	1	1	100
1,2,3,7,8,9-Hexachlorodibenzofuran	Dioxin/furan	1	1	100
1,2,3,7,8,9-Hexachlorodibenzo-p-dioxin	Dioxin/furan	1	1	100
1,2,3,7,8-Pentachlorodibenzofuran	Dioxin/furan	1	1	100
1,2,3,7,8-Pentachlorodibenzo-p-dioxin	Dioxin/furan	1	1	100
2,3,4,6,7,8-Hexachlorodibenzofuran	Dioxin/furan	1	1	100
2,3,4,7,8-Pentachlorodibenzofuran	Dioxin/furan	1	1	100
Heptachlorodibenzofurans	Dioxin/furan	1	1	100
Heptachlorodibenzo-p-dioxins	Dioxin/furan	1	1	100
Hexachlorodibenzofurans	Dioxin/furan	1	1	100
Hexachlorodibenzo-p-dioxin	Dioxin/furan	1	1	100
Octachlorodibenzofuran	Dioxin/furan	1	1	100
Octachlorodibenzo-p-dioxin	Dioxin/furan	1	1	100
Pentachlorodibenzofurans	Dioxin/furan	1	1	100
Pentachlorodibenzo-p-dioxins	Dioxin/furan	1	1	100
1,2-Dichloroethane	VOC	44	1	2.3
1,4-Dichlorobenzene	VOC	44	1	2.3
2-Hexanone	VOC	28	1	3.6
4-Methyl-2-pentanone	VOC	54	1	1.9
Acetone ^b	VOC	282	10	3.5
Benzene	VOC	48	2	4.2
Bromomethane	VOC	39	9	23
Carbon Disulfide	VOC	64	9	14.1
Chloroform	VOC	64	4	6.3
Chloromethane	VOC	43	15	34.9
Iodomethane	VOC	28	3	10.7
Methylene Chloride	VOC	267	9	3.4
Styrene	VOC	40	4	10

Table 6-3. Distribution of Contamination in Laboratory Blank Results Exceeding QC Criteria

Analyte Name	Analyte Class	Total Collected	Total Results Out of Limits ^a	Percent Out of Limits
Tetrachloroethene	VOC	72	4	5.6
Trichloroethene	VOC	72	8	11.1
	Total	7,684	516	

a. For general chemical parameters, ammonia and anions, metals, and VOCs, the quality control limit for method blanks is the method detection limit. For semivolatile organic compounds, the quality control limit is twice the method detection limit. For radiochemical constituents, the quality control limit is twice the minimum detectable activity.

VOC = volatile organic compound

1

- 2 A total of 819 individual results required qualification as a result of laboratory contamination. Tables A-3
- through A-8 in Appendix A list the sample results that required qualification for years 2008 through 2013.

4 6.2 Laboratory Precision

- 5 Precision is the degree of agreement among repeated measurements of the same characteristic. It may be
- 6 determined by calculating the standard deviation, or RPD, among samples taken from the same place at
- 7 the same time. The laboratory precision is determined by the difference between duplicate sample pair
- 8 results or between MS/MSD pairs. Normally, sample duplicates are used for metals and anions while
- 9 MSs/MSDs are used for organic analyses.
- 10 In total, 6,124 laboratory duplicates were associated with the 200-PO-1 Groundwater OU data set, which
- represents 4.3 percent of the total number of 200-PO-1 Groundwater OU results. This does not satisfy the
- minimum QC requirement of one in 20.
- Of these 6,124 duplicates, 16 individual analytes had RPDs that exceeded the QC acceptance criteria
- listed in Table 6-1. In total, 1,310 laboratory duplicate pair results were associated with these 16 analytes.
- Of the 1,310 pairs collected, 407 were evaluated, and 55 (0.92 percent of total) exceeded laboratory
- 16 precision criteria.

20

- 17 Table 6-4 lists the total number of laboratory duplicates associated with the 200-PO-1 Groundwater OU
- data set by analyte class. Table 6-5 shows the distribution of the individual analytes in the laboratory
- 19 duplicate pairs with RPDs exceeding QC criteria.

6.3 Laboratory Accuracy

- 21 Accuracy measures how close the results are to a "true" or expected value and can be determined by
- 22 comparing the analysis of a standard or reference sample to its actual value. Three types of QC are used
- 23 to assess accuracy. The LCS serves as to monitor of the overall performance of each step during the
- 24 analysis, including the sample preparation. The MSs and surrogate spikes are used to provide
- 25 information about the effect of each sample matrix on the sample preparation procedures and the
- 26 measurement methodology.

b. The quality control limit for this analyte is five times the method detection limit.

Table 6-4. Total Laboratory Duplicate Results by Analyte Class

Analyte Class	Results
Anions	3,017
General Chemistry	365
Radiochemistry	2,697
Metals	45
Semivolatile Organic Compounds	_
Volatile Organic Compounds	=
Total	6,124

2 6.3.1 Laboratory Control Samples

- 3 There were 31,432 LCS/laboratory control sample duplicate (LCSD) results reported for the
- 4 200-PO-1 Groundwater OU data set, which represents 21.9 percent of the total number of results.
- 5 Of these 31,432 LCS/LCSD results, 105 individual analytes exceeded the acceptance criteria in Table 6-1.
- 6 In total, 5,970 LCS/LCSD results were associated with these 105 analytes; 1,214 of the 5,970 results were
- 7 LCSDs. Of these 5,970 results, 269 results or 0.86 percent of the total exceeded QC requirements for the
- 8 LCS/LCSD percent recovery to be within the minimum and maximum laboratory control limits. Of the
- 9 1,214 LCSD results, 98 or 0.31 percent had RPDs that were outside the QC acceptance criteria identified
- in Table 6-1. Table 6-6 lists the total number of LCS/LCSD results reported for the
- 11 200-PO-1 Groundwater OU data set by analyte class. Table 6-7 shows the LCS/LCSDs that exceeded QC
- 12 limits by analyte.
- 13 The LCS/LCSD results reported for the 200-PO-1 Groundwater OU generally have sample results from
- more than one project associated with them. Although LCS/LCSD criteria may have been exceeded for
- an analytical batch, samples included in this DQA may not have been affected or required sample
- qualification. Sample results associated with LCS/LCSDs that were outside laboratory-specified QC
- 17 acceptance criteria are discussed below by year.
- 18 In 2008, 39 LCS/LCSD percent recoveries exceeded the OC acceptance criteria. Percent recovery
- 19 exceedances ranged from 16 to 89.5 percent on the low end and 122 to 300.7 percent on the high end.
- There were 95 sample results associated with these LCS/LCSDs. The high-end exceedances included
- vinyl acetate, isobutyl alcohol, and calcium. A total of 40 individual results required qualification as
- a result of LCS recoveries reported outside QC acceptance criteria. Table A-10 (Appendix A) lists the
- 23 sample results that required qualification for the year 2008.

Table 6-5. Distribution of Analytes in Laboratory Duplicate Pairs with RPDs Exceeding QC Criteria

Analyte Name	Analyte Class	Number Laboratory Duplicates Collected	Number Laboratory Duplicates Evaluated*	Number with RPD Out of Limits	Percent RPDs Out of Limit	Range of RPD Exceedances
Ammonium Ion	Anions	8	2	2	100	47.5-101.5
Fluoride	Anions	78	13	1	7.7	200
Nitrogen in Nitrite	Anions	85	3	1	7.7	26
Coliform Bacteria	General chemistry	4	2	2	100	31.3 102
Total Organic Carbon	General chemistry	1	1	1	100	51
Total Organic Halides	General chemistry	8	4	3	75	31-125
Gross Alpha	Radiochemistry	294	26	7	26.9	22.4-203.3
Gross Beta	Radiochemistry	343	172	15	7.9	20.3-116.4
Iodine-129	Radiochemistry	192	57	11	18.5	22.1-77.4
Potassium-40	Radiochemistry	27	1	1	100	215.8
Strontium-90	Radiochemistry	26	4	1	25	20.7
Technetium-99	Radiochemistry	49	17	1	5.9	106.7
Tritium	Radiochemistry	168	93	3	3.2	20-133
Uranium-234	Radiochemistry	13	6	3	50	23.3-28.5
Uranium-235	Radiochemistry	2	1	1	100	28.6
Uranium-238	Radiochemistry	12	5	2	40	25-46.5
	Total	1,310	407	55	13.5	

^{*} Meets the evaluation criterion that the sample-duplicate pair has at least one result greater than or equal to five times the method detection limit or the minimum detectable activity.

RPD = relative percent difference

Table 6-6. Total Laboratory Control Samples (LCS/LCSD) by Analyte Class

Analyte Class	Results
Anions	3,161
General Chemistry	1,172
Metals	10,890
Radiochemistry	2,016
Semivolatile Organic Compounds	3,264
Volatile Organic Compounds	10,929
Total	31,432

Table 6-7. LCS Results Exceeding QC Criteria

Analyte Name	Analyte Class	Total LCS/LCSD Analyzed	Number LCS/LCSD Out of Limits*	Number of LCSD	Number of RPDs Out of Limits
Cyanide	Anions	4	1	_	_
Sulfate	Anions	105	1	-	_
Oil and Grease	General chemistry	1	1	_	-
Total Petroleum Hydrocarbons-Diesel	General chemistry	20	1	_	_
Arsenic	Metals	40	1	_	_
Iron	Metals	104	1	_	_
Potassium	Metals	209	2	-	_
Silver	Metals	141	1	_	_
Sodium	Metals	75	1	_	_
Thallium	Metals	88	3	_	_
Uranium	Metals	25	1	_	_
Gross Alpha	Radiochemistry	235	11	-	_
Gross Beta	Radiochemistry	206	6	_	_
Radium-228	Radiochemistry	14	1	1—1	_
Strontium-90	Radiochemistry	83	4	_	_
Technetium-99	Radiochemistry	18	1	-	_
Total Alpha Energy Emitted from Radium	Radiochemistry	11	3	_	_

Table 6-7. LCS Results Exceeding QC Criteria

Analyte Name	Analyte Class	Total LCS/LCSD Analyzed	Number LCS/LCSD Out of Limits*	Number of LCSD	Number of RPDs Out of Limits
Tritium	Radiochemistry	174	9	_	· -
Uranium-235	Radiochemistry	7	4	_	_
1,2,4-Trichlorobenzene	SVOC	25	2	2	1
1,2-Dichlorobenzene	SVOC	15	1	1	_
1,3-Dichlorobenzene	SVOC	15	1	1	_
1,4-Dichlorobenzene	SVOC	104	4	30	1
1,4-Dioxane	SVOC	11	1	3	_
2,3,4,6-Tetrachlorophenol	SVOC	17	3	_	_
2,4,5-Trichlorophenol	SVOC	23	1	1	_
2,4,6-Trichlorophenol	SVOC	23	1	1	_
2,4-Dichlorophenol	SVOC	27	1	1	_
2,4-Dimethylphenol	SVOC	34	1	2	1
2,4-Dinitrophenol	SVOC	66	6	2	
2,6-Dichlorophenol	SVOC	8	1	1-	-
2-Chlorophenol	SVOC	27	1	1	_
2-Methylphenol (cresol, o-)	SVOC	27	1	1	_
2-Nitrophenol	SVOC	27	1	1	_
2-Picoline	SVOC	2	1	_	_
3-Nitroaniline	SVOC	15	1	1	_
3+4 Methylphenol (cresol,m+p)	SVOC	8	1	_	_
4,4'- DDE(Dichlorodiphenyldichloroethylene)	Pesticide	4	1	_	_
4,4'- DDT(Dichlorodiphenyltrichloroethane)	Pesticide	4	1	_	_
4,6-Dinitro-2-methylphenol	SVOC	23	1	1	7
4-Chloro-3-methylphenol	SVOC	27	1	1	_
4-Chloroaniline	SVOC	15	1	1	y—
4-Nitrophenol	SVOC	41	1	2	1
Acenaphthene	SVOC	19	1	1	_

Table 6-7. LCS Results Exceeding QC Criteria

Analyte Name	Analyte Class	Total LCS/LCSD Analyzed	Number LCS/LCSD Out of Limits*	Number of LCSD	Number of RPDs Out of Limits
Aldrin	Pesticide	6	2	1	7—
Bis(2-chloroethyl)ether	SVOC	15	1	1	_
Dieldrin	Pesticide	4	1	_	_
Dinoseb(2-secButyl-4,6-dinitrophenol)	Pesticide	14	3	_	-
Endosulfan II	Pesticide	4	1	_	_
Endosulfan Sulfate	Pesticide	4	1	_	_
Endrin	Pesticide	4	1	-	_
Endrin Aldehyde	Pesticide	4	1	_	-
Heptachlor	Pesticide	4	1	_	-
Heptachlor Epoxide	Pesticide	4	1	_	_
Hexachloroethane	SVOC	15	1	1	_
Methoxychlor	SVOC	4	1	-	_
n-Nitrosodimethylamine	SVOC	2	1	_	7—
n-Nitrosodi-n-dipropylamine	SVOC	19	1	1	-
Naphthalene	SVOC	6	_	1	1
Pentachlorophenol	SVOC	56	7	2	1
Phenol	SVOC	27	2	1	_
Tributyl Phosphate	SVOC	14	2	_	-
1,1-Dichloroethane	VOC	138	3	29	_
1,1-Dichloroethene	VOC	183	4	23	1
1,1,1-Trichloroethane	VOC	28	1	12	-
1,1,2,2-Tetrachloroethane	VOC	21	_	10	1
1,2-Dibromo-3-chloropropane	VOC	21	1	10	1
1,2-Dibromoethane	VOC	40	1	12	_
1,2-Dichloroethane	VOC	94	2	34	1
1,2-Dichloropropane	VOC	21	1	10	-
1,2,3-Trichloropropane	VOC	4	1	2	2
1,4-Dichlorobenzene	VOC	182	8	52	-

Table 6-7. LCS Results Exceeding QC Criteria

Analyte Name	Analyte Class	Total LCS/LCSD Analyzed	Number LCS/LCSD Out of Limits*	Number of LCSD	Number of RPDs Out of Limits
1,4-Dioxane	VOC	201	3	71	9
1-Butanol	VOC	198	4	70	11
2-Butanone	VOC	204	_	72	14
2-Hexanone	VOC	69	1	26	2
4-Methyl-2-pentanone	VOC	66	_	30	2
Acetone	VOC	169	12	61	5
Acetonitrile	VOC	61	1	22	3
Acrolein	VOC	72	18	26	10
Benzene	VOC	157	6	28	-
Bromodichloromethane	VOC	8	2	4	_
Bromomethane	VOC	69	18	26	2
Carbon Disulfide	VOC	232	9	63	3
Carbon Tetrachloride	VOC	30	1	13	7—
Chlorobenzene	VOC	54	2	10	_
Chloroform	VOC	38	2	10	
Chloromethane	VOC	40	3	12	1
cis-1,2-Dichloroethylene	VOC	72	2	10	_
cis-1,3-Dichloropropene	VOC	4	1	2	7—
Ethyl Cyanide	VOC	161	2	62	4
Ethyl Methacrylate	VOC	21	_	10	1
Iodomethane	VOC	69	10	26	1
Isobutyl Alcohol	VOC	73	4	28	5
Methacrylonitrile	VOC	29	_	14	2
Methyl Methacrylate	VOC	69	1	26	3
Methylene Chloride	VOC	143	5	51	7—
Styrene	VOC	40	1	12	7—7
Tetrachloroethene	VOC	66	3	22	1
Tetrahydrofuran	VOC	167	4	62	4

Table 6-7. LCS Results Exceeding QC Criteria

Analyte Name	Analyte Class	Total LCS/LCSD Analyzed	Number LCS/LCSD Out of Limits*	Number of LCSD	Number of RPDs Out of Limits
Trans-1,2-Dichloroethylene	VOC	91	3	11	-
trans-1,3-Dichloropropene	VOC	56	5	20	_
Trans-1,4-Dichloro-2-butene	VOC	29	_	14	2
Vinyl Acetate	VOC	69	6	26	3
Vinyl Chloride	VOC	38	1	18	_
	Totals	5,970	269	1,214	

^{*}LCS percent recovery must be between the laboratory-provided minimum control limit and maximum control limit.

LCS = laboratory control sample SVOC = semivolatile organic compound LCSD = laboratory control sample duplicate VOC = volatile organic compound

RPD = relative percent difference

- 2 In 2009, there were 30 LCS/LCSD percent recoveries that exceeded the QC acceptance criteria.
- 3 Percent recovery exceedances ranged from 32 to 79.3 percent on the low end and 128 to 190 percent on
- 4 the high end. In total, 40 sample results were associated with these LCS/LCSDs. The analytes that had the
- 5 highest exceedances were bromomethane and acetone. A total of 6 individual results required
- 6 qualification as a result of LCS recoveries reported outside QC acceptance criteria. Table A-11
- 7 (Appendix A) lists the sample results that required qualification for the year 2009.
- 8 In 2010, there were 106 LCS/LCSD percent recoveries that exceeded the OC acceptance criteria.
- 9 Percent recovery exceedances ranged from 10.2 to 79 percent on the low end and 120 to 239 percent on
- the high end. In total, 250 sample results were associated with these LCSs. Acrolein had 4 exceedances
- over 200 percent. A total of 40 individual results required qualification as a result of LCS recoveries
- 12 reported outside QC acceptance criteria. Table A-12 (Appendix A) lists the sample results that required
- 13 qualification for the year 2010.
- 14 In 2011, there were 22 LCS/LCSD percent recoveries that exceeded the QC acceptance criteria.
- Percent recovery exceedances ranged from 1.3 to 79.8 percent on the low end and 108 to 150 percent on
- the high end. In total, 63 sample results were associated with these LCSs. Acrolein had the highest
- exceedance with a percent recovery of 150 percent. A total of 19 individual results required qualification
- as a result of LCS recoveries reported outside QC acceptance criteria. Table A-13 (Appendix A) lists the
- sample results that required qualification for the year 2011.
- 20 In 2012, there were 10 LCS/LCSD percent recoveries that exceeded the QC acceptance criteria.
- 21 Percent recovery exceedances ranged from 50.3 to 84.8 percent on the low end and 127.8 to 164.5 percent
- 22 on the high end. In total, 54 sample results were associated with these LCSs. Carbon disulfide,
- 23 cis-1,3-dichloropropene, 1,1-dichloroethane, and 1,1-dichloroethene exceeded on the high end. A total of
- 24 9 individual results required qualification as a result of LCS recoveries reported outside QC acceptance
- 25 criteria. Table A-14 (Appendix A) lists the sample results that required qualification for the year 2012.

- In 2013, there were 15 LCS/LCSD percent recoveries that exceeded the QC acceptance criteria.
- 2 Percent recovery exceedances ranged from 71 to 79.1 percent on the low end and 120.4 percent on the
- 3 high end for technetium-99. In total, 17 sample results were associated with these LCSs. A total of 8
- 4 individual results required qualification as a result of LCS recoveries reported outside QC acceptance
- 5 criteria. Table A-15 (Appendix A) lists the sample results that required qualification for the year 2013.
- 6 In summary, there were 519 sample results associated with LCS/LCSD exceedances. This represents
- 7 less than 1 percent of the total results in the 200-PO-1 Groundwater OU data set. A total of 122 individual
- 8 sample results required qualification as a result of LCS recoveries reported outside QC
- 9 acceptance criteria.

10 6.3.2 Laboratory Matrix Spike/Matrix Spike Duplicates

- Laboratory spike recovery is also used as a measure of laboratory accuracy and precision. For the
- 12 200-PO-1 Groundwater OU data set, there were 51,327 individual spiked sample results.
- 13 Of these 51,327 MS/MSD percent recoveries, 139 individual analytes exceeded the minimum and/or
- maximum control limits set up by the laboratory. In total, 24,706 MS/MSD results were associated with
- these 139 analytes; 12,175 of the 24,706 results were MSDs. Of these MS results, 658exceeded the
- minimum and/or maximum control limits set up by the laboratory. Of the 12,175 MSD results, 501 or
- 17 0.98 percent of the total reported RPDs did not meet the acceptance criteria listed in Table 6-1. The total
- 18 laboratory MSs/MSDs reported with the 200-PO-1 Groundwater OU data set are listed by analyte class in
- 19 Table 6-8. Table 6-9 shows the 139 analytes that reported laboratory MS results outside of the QC
- 20 acceptance criteria.

Table 6-8. Total Laboratory Spikes (MS/MSD) by Analyte Class

Analyte Class	Results
Anions	6,178
General Chemistry	1,831
Metals	19,471
Radiochemistry	511
Semivolatile Organic Compounds	5,490
Volatile Organic Compounds	17,846
Total	51,327

Table 6-9. Laboratory Matrix Spike Results Outside of QC Criteria

Analyte Name	Analyte Class	Number MS/MSD	Number MS/MSD Out of Limits*	Number MSD	Number RPDs Out of Limit
Chloride	Anions	1,157	36	569	8
Cyanide	Anions	10	2	5	_
Fluoride	Anions	807	9	395	3

Table 6-9. Laboratory Matrix Spike Results Outside of QC Criteria

Analyte Name	Analyte Class	Number MS/MSD	Number MS/MSD Out of Limits*	Number MSD	Number RPDs Out of Limit
Ammonium ion	Anions	9	1	4	_
Nitrate	Anions	743	8	365	1
Nitrite	Anions	598	4	299	3
Sulfate	Anions	721	12	351	4
Oil and Grease	General chemistry	1	1	_	_
Total Organic Carbon	General chemistry	623	9	265	3
Total Organic Halides	General chemistry	634	4	296	7
Total Petroleum Hydrocarbons –Diesel	General chemistry	40	1	20	-
Barium	Metals	238	4	119	1
Calcium	Metals	802	10	401	2
Chromium	Metals	238	2	119	<u> </u>
Iron	Metals	746	13	373	6
Magnesium	Metals	220	4	110	1
Manganese	Metals	214	1	107	-
Potassium	Metals	556	11	278	2
Silver	Metals	740	17	370	7
Sodium	Metals	564	7	282	=
Strontium	Metals	138	4	69	-
Thallium	Metals	82	1	41	-
Uranium	Metals	35	3	16	_
Zinc	Metals	142	2	71	1
Technetium-99	Radiochemistry	37	1	_	_
Tritium	Radiochemistry	105	3	_	1-
1,2,4-Trichlorobenzene	SVOC	52	4	26	1
1,4-Dichlorobenzene	SVOC	232	8	116	5
1,4-Dioxane	SVOC	14	2	7	1

Table 6-9. Laboratory Matrix Spike Results Outside of QC Criteria

Analyte Name	Analyte Class	Number MS/MSD	Number MS/MSD Out of Limits*	Number MSD	Number RPDs Out of Limit
2,3,4,6-Tetrachlorophenol	SVOC	66	4	33	7
2,4,5-Trichlorophenol	SVOC	94	4	47	6
2,4,5-T(2,4,5-Trichlorophenoxyacetic acid)	Herbicide	2	1	1	_
2,4,6-Trichlorophenol	SVOC	94	4	47	6
2,4-Dichlorophenol	SVOC	147	3	73	5
2,4-DB(4-(2,4-Dichlorophenoxy)butanoic acid)	Herbicide	2	1	1	_
2,4-Dimethylphenol	SVOC	110	4	55	6
2,4-Dinitrophenol	SVOC	130	12	65	11
2,4-Dinitrotoluene	SVOC	52	_	26	2
2,6-Dichlorophenol	SVOC	66	4	33	6
2-Chlorophenol	SVOC	113	5	56	6
2-Methylphenol (cresol, o-)	SVOC	147	4	73	6
2-Nitrophenol	SVOC	147	3	73	8
2-Picoline	SVOC	36	1	18	3
3-Nitroaniline	SVOC	22	=	11	1
3,3'-Dichlorobenzidine	SVOC	28	1	14	1
3+4 Methylphenol (cresol, m+p)	SVOC	98	4	49	6
4,4'-DDD (Dichlorodiphenyldichloroethane)	Pesticide	8	1	4	_
4,4'-DDE (Dichlorodiphenyldichloroethylene)	Pesticide	28	3	14	_
4,4'-DDT(Dichlorodiphenyltrichloroethane)	Pesticide	28	2	14	1
4,6-Dinitro-2-methylphenol	SVOC	94	5	47	8
4-Bromophenylphenyl ether	SVOC	22	1	11	_
4-Chloro-3-methylphenol	SVOC	113	2	56	7
4-Chloroaniline	SVOC	28	-	14	4
4-Nitrophenol	SVOC	175	14	87	19
Aldrin	Pesticide	20	1	10	_
Alpha-BHC	Pesticide	28	2	14	-

Table 6-9. Laboratory Matrix Spike Results Outside of QC Criteria

Analyte Name	Analyte Class	Number MS/MSD	Number MS/MSD Out of Limits*	Number MSD	Number RPDs Out of Limit
Benzo(a)pyrene	SVOC	22	1	11	-
Benzo(ghi)perylene	SVOC	22	-	11	1
Beta-1,2,3,4,5,6-hexachlorocyclohexane (beta-BHC)	Pesticide	20	1	10	-
Bis(2-ethylhexyl)phthalate	SVOC	70	-	35	3
Delta-BHC	Pesticide	20	1	10	_
Dibenz[a,h]anthracene	SVOC	22	_	11	1
Dieldrin	Pesticide	8	1	4	-
Dinoseb(2-secButyl-4,6-dinitrophenol)	Herbicide	70	6	35	8
Endosulfan I	Pesticide	20	2	10	-
Endosulfan II	Pesticide	8	1	4	_
Endosulfan Sulfate	Pesticide	28	2	14	· -
Endrin	Pesticide	8	2	4	-
Endrin Aldehyde	Pesticide	8	1	4	1
Heptachlor	Pesticide	28	10	14	3
Heptachlor Epoxide	Pesticide	20	1	10	-
Hexachlorobenzene	SVOC	22	1	11	1
Hexachlorocyclopentadiene	SVOC	22	2	11	=
Hexachloroethane	SVOC	22	2	11	T-1
Hexachlorophene	SVOC	4	-	2	1
Indeno(1,2,3-cd)pyrene	SVOC	22	-	11	1
Methoxychlor	SVOC	8	1	4	1-
Naphthalene	SVOC	24	_	12	1
n-Nitrosodimethylamine	SVOC	8	2	4	1
Pentachlorophenol	SVOC	215	10	107	17
Phenol	SVOC	215	6	107	11
Pyrene	SVOC	28	_	14	1
Tributyl Phosphate	SVOC	30	2	15	1

Table 6-9. Laboratory Matrix Spike Results Outside of QC Criteria

Analyte Name	Analyte Class	Number MS/MSD	Number MS/MSD Out of Limits*	Number MSD	Number RPDs Out of Limit
Tris-2-chloroethyl phosphate	SVOC	6	_	3	2
1,1,1,2-Tetrachloroethane	VOC	64	_	32	1
1,1,1-Trichloroethane	VOC	438	9	219	4
1,1,2,2-Tetrachloroethane	VOC	66	10	33	1
1,1-Dichloroethane	VOC	438	10	219	7
1,1-Dichloroethene	VOC	716	14	358	5
1,1,2-Trichloroethane	VOC	394	4	197	3
1,2-Dibromo-3-chloropropane	VOC	98	3	49	3
1,2-Dibromoethane	VOC	64	1	32	2
1,2-Dichloroethane	VOC	302	8	151	4
1,2-Dichloroethene (Total)	VOC	64	1	32	1
1,2-Dichloropropane	VOC	64	_	32	1
1,4-Dichlorobenzene	VOC	208	8	104	4
1,4-Dioxane	VOC	326	7	163	30
1-Butanol	VOC	334	12	167	30
2-Butanone	VOC	280	4	140	15
2-Chloroethyl Vinyl Ether	VOC	2	2	1	_
2-Hexanone	VOC	80	2	40	2
4-Methyl-2-pentanone	VOC	304	4	152	9
Acetone	VOC	372	21	186	26
Acetonitrile	VOC	90	2	45	9
Acrolein	VOC	88	32	44	6
Allyl Chloride	VOC	64	3	32	3
Benzene	VOC	598	4	299	4
Bromodichloromethane	VOC	74	3	37	1
Bromoform	VOC	66	1	33	2
Bromomethane	VOC	88	17	44	4
Carbon Disulfide	VOC	356	11	178	5

Table 6-9. Laboratory Matrix Spike Results Outside of QC Criteria

Analyte Name	Analyte Class	Number MS/MSD	Number MS/MSD Out of Limits*	Number MSD	Number RPDs Out of Limit
Carbon Tetrachloride	VOC	244	8	122	4
Chlorobenzene	VOC	336	1	168	1
Chloroethane	VOC	64	5	32	1
Chloroform	VOC	182	7	91	3
Chloromethane	VOC	64	4	32	3
Chloroprene	VOC	64	1	32	1
cis-1,2-Dichloroethylene	VOC	389	6	195	3
cis-1,3-Dichloropropene	VOC	64	7	32	2
Dibromochloromethane	VOC	66	3	33	2
Dichlorodifluoromethane	VOC	10	1	5	
Ethyl Cyanide	VOC	274	5	137	6
Ethyl Methacrylate	VOC	74	4	37	1
Ethylbenzene	VOC	298	2	149	3
Iodomethane	VOC	90	22	45	7
Isobutyl Alcohol	VOC	98	4	49	8
Methacrylonitrile	VOC	74	4	37	1
Methyl Methacrylate	VOC	82	2	41	2
Methylene Chloride	VOC	284	7	142	7
Styrene	VOC	64	1	32	1
Tetrachloroethene	VOC	184	1	92	3
Tetrahydrofuran	VOC	220	5	110	7
Toluene	VOC	598	3	299	3
trans-1,2-Dichloroethylene	VOC	377	19	189	3
trans-1,3-Dichloropropene	VOC	64	3	32	2
trans-1,4-Dichloro-2-butene	VOC	72	3	36	5
Trichloroethene	VOC	562	7	281	3
Trichloromonofluoromethane	VOC	74	3	37	1
Vinyl Acetate	VOC	80	1	40	4

Table 6-9. Laboratory Matrix Spike Results Outside of QC Criteria

Analyte Name	Analyte Class	Number MS/MSD	Number MS/MSD Out of Limits*	Number MSD	Number RPDs Out of Limit
Vinyl Chloride	VOC	220	1	110	3
	Total	24,706	658	12,175	501

^{*} Laboratory spikes where the sample result is less than or equal to four times the spiking concentration are evaluated by comparing the percent recovery with the minimum and maximum control limits provided by the laboratory. In addition, where the sample result is less than or equal to four times the spiking concentration, the MS/MSD RPD must have an RPD of less than or equal to 20 percent.

MS = matrix spike SVOC = semivolatile organic compound
MSD = matrix spike duplicate VOC = volatile organic compound

RPD = relative percent difference

1

- 2 The MS/MSD results reported for the 200-PO-1 Groundwater OU generally have sample results from
- 3 more than one project associated with them. Although MS/MSD criteria may have been exceeded for an
- 4 analytical batch, samples included in this DQA may not have been affected or required qualification.
- 5 Sample results associated with MS/MSDs that were outside of the laboratory-specified QC acceptance
- 6 criteria are discussed below by year.
- 7 In 2008, there were 59 MS/MSD percent recoveries that exceeded the minimum and/or maximum QC
- 8 limits established by the laboratory. Percent recovery exceedances ranged from -81 to 77 percent on the
- 9 low end and 120.2 to 236 percent on the high end. In total, 356 sample results were associated with these
- MS/MSDs. The analytes that had the highest exceedances (over 200 percent) included 4-nitrophenol,
- heptachlor, and sodium. A total of 140 individual results required qualification as a result of MS or MSD
- 12 recoveries reported outside QC acceptance criteria. Table A-17 (Appendix A) lists the sample results that
- required qualification for the year 2008.
- 14 In 2009, there were 65 MS/MSD percent recoveries that exceeded the minimum and/or maximum QC
- limits established by the laboratory. Percent recovery exceedances ranged from 0 to 79 percent on the low
- end and 130.1 to 592 percent on the high end. In total, 59 sample results were associated with these
- MS/MSDs. The analytes that had the highest exceedances (over 200 percent) included acetone, iron, and
- heptachlor. A total of 12 individual results required qualification as a result of MS or MSD recoveries
- 19 reported outside QC acceptance criteria. Table A-18 (Appendix A) lists the sample results that required
- 20 qualification for the year 2009.
- 21 In 2010, there were 119 MS/MSD percent recoveries that exceeded the minimum and/or maximum QC
- 22 limits established by the laboratory. Percent recovery exceedances ranged from -108 to 79.7 percent on
- 23 the low end and 115 to 2,380 percent on the high end. There were 128 sample results associated with
- these MS/MSDs. Analytes with exceedances over 300 percent include acrolein, barium, bromomethane,
- 25 1,2-dibromoethane, cis-1,3-dichloropropene, trans-1,3-dichloropropene, and iodomethane. A total of
- 26 62 individual results required qualification as a result of MS or MSD recoveries reported outside QC
- 27 acceptance criteria. Table A-19 (Appendix A) lists the sample results that required qualification for the
- 28 year 2010.

- 1 In 2011, there were 39 MS/MSD percent recoveries that exceeded the minimum and/or maximum QC
- 2 limits established by the laboratory. Percent recovery exceedances ranged from 6.1 to 89 percent on the
- low end and 111 to 436 percent on the high end. In total, 92 sample results were associated with these
- 4 MS/MSDs. No individual results required qualification as a result of MS or MSD recoveries reported
- 5 outside QC acceptance criteria.
- 6 In 2012, there were 24 MS/MSD percent recoveries that exceeded the minimum and/or maximum QC
- 7 limits established by the laboratory. Percent recovery exceedances ranged from-289 to 78 percent on the
- low end and 121 to 189 percent on the high end. In total, 42 sample results were associated with these
- 9 MS/MSDs. The analytes with exceedances over 150 percent were 2,4,5-T(2,4,5-trichlorophenoxyacetic
- acid), 2,4-DB(4-(2,4-dichlorophenoxy)butanoic acid), and calcium. A total of 42 individual results
- required qualification as a result of MS or MSD recoveries reported outside QC acceptance criteria.
- 12 Table A-20 (Appendix A) lists the sample results that required qualification for the year 2012.
- In 2013, there were 70 MS/MSD percent recoveries that exceeded the minimum and/or maximum control
- limits established by the laboratory. The range of percent recovery exceedances went from 147 to
- 79.7 percent on the low end and 120 to 140 percent on the high end. In total, 112 sample results were
- 16 associated with these MS/MSDs. A total of 66 individual results required qualification as a result of MS
- or MSD recoveries reported outside QC acceptance criteria. Table A-21 (Appendix A) lists the sample
- results that required qualification for the year 2013.
- 19 In summary, there were 789 sample results associated with MS/MSD exceedances. This represents less
- 20 than 1 percent of the total results in the 200-PO-1 Groundwater OU data set. A total of 322 individual
- 21 sample results required qualification as a result of MS/MSD recoveries reported outside QC
- 22 acceptance criteria.

23 6.3.3 Surrogate Spikes

- 24 Finally, as part of VOC/SVOC analyses, a compound that is not likely to be contained in an
- 25 environmental sample (a surrogate) is injected into each sample as a measure of overall method
- 26 performance on that specific sample. The 200-PO-1 Groundwater OU data set contained
- 27 25,217 individual surrogate results. Of these results, 16 individual analytes were outside of the
- laboratory-specified acceptability criteria. In total, 18,673 surrogate results are associated with these
- 29 15 analytes. Of these results, 254 or 1.0 percent exceeded the OC limits established by the laboratory.
- 30 The total laboratory surrogates reported with the 200-PO-1 Groundwater OU data set are listed by analyte
- 31 class in Table 6-10. Table 6-11 shows the 16 analytes that reported surrogate results outside of QC
- 32 acceptance criteria.

Table 6-10. Total Laboratory Surrogates by Analyte Class

Analyte Class	Results
General Chemistry	214
Semivolatile Organic Compounds	7,153
Volatile Organic Compounds	17,850
Total	25,217

Table 6-11. Laboratory Surrogates Exceeding QC Criteria

Analyte	Compound Class	Number of Surrogates	Number Surrogates Out of Limits	Percent Surrogates Out of Limits
1,2-Dichloroethane-d4	VOC	4,461	34	0.76
2,2',3,3',4,4',5,5',6,6'-Decachlorobiphenyl	PCB	78	1	1.3
2,4,5,6-Tetrachloro-m-xylene	PCB	78	3	3.8
2,4,6-Tribromophenol	SVOC	1,324	23	1.7
2-Fluorobiphenyl	SVOC	560	17	3.0
2-Fluorophenol	SVOC	1,307	20	1.5
2-Methylnaphthalene-d10	SVOC	66	2	3.0
4-Fluorobromobenzene	VOC	3,767	48	1.3
Dibromofluoromethane	VOC	1,147	16	1.4
Fluoranthene-d10	VOC	66	3	4.5
Nitrobenzene-d5	SVOC	560	13	2.3
o-Terphenyl	TPH	187	3	1.6
Phenol-d5	SVOC	785	39	5.0
p-terphenyl-d14	SVOC	397	2	0.50
Terphenyl-d14	SVOC	126	8	6.3
Toluene-d8	VOC	3,764	22	0.58
	Total	18,673	254	

PCB = polychlorinated biphenyl TPH = total petroleum hydrocarbon SVOC = semivolatile organic compound VOC = volatile organic compound

2

1

3

- 1 Surrogate recovery results reported for the 200-PO-1 Groundwater OU generally have sample results
- 2 from more than one project associated with them. Although surrogate spike recovery criteria may have
- 3 been exceeded for an analytical batch, samples included in this DQA may not have been affected or
- 4 required sample qualification. Sample results associated with surrogate recoveries that were outside the
- 5 laboratory-specified QC acceptance criteria are discussed below by year.
- 6 In 2008, there were nine surrogate percent recoveries that were outside of the laboratory-specified QC
- 7 acceptance criteria. Percent recovery exceedances ranged from 1.1 to 7 percent on the low end and 111 to
- 8 139 percent on the high end. In total, 172 sample results were associated with these surrogates. A total of
- 9 28 individual results required qualification as a result of surrogate recoveries reported outside QC
- 10 acceptance criteria. Table A-23 (Appendix A) lists the sample results that required qualification for the
- 11 year 2008.
- 12 In 2009, there were eight surrogate percent recoveries that were outside of the laboratory-specified QC
- acceptance criteria. Percent recovery exceedances ranged from 0.88 to 47 percent on the low end and
- 14 112 to 148 percent on the high end. In total, 230 sample results were associated with these surrogates.
- 15 A total of 34 individual results required qualification as a result of surrogate recoveries reported outside
- 16 QC acceptance criteria. Table A-24 (Appendix A) lists the sample results that required qualification for
- 17 the year 2009.
- 18 In 2010, there were 15 surrogate percent recoveries that were outside of the laboratory-specified QC
- 19 acceptance criteria. Percent recovery exceedances ranged from 0 to 40 percent and they were all on the
- 20 low end. In total, 816 sample results were associated with these surrogates. A total of 135 individual
- 21 results required qualification as a result of surrogate recoveries reported outside QC acceptance criteria.
- Table A-25 (Appendix A) lists the sample results that required qualification for the year 2010.
- 23 In 2011, there were 25 surrogate percent recoveries that were outside of the laboratory-specified QC
- 24 acceptance criteria. Percent recovery exceedances ranged from 0.77 to 34 percent on the low end and
- 25 99 to 139 percent on the high end. In total, 164 sample results were associated with these surrogates.
- 26 No individual results required qualification as a result of surrogate recoveries reported outside QC
- 27 acceptance criteria.
- 28 In 2012, there were 29 surrogate percent recoveries that were outside of the laboratory-specified QC
- 29 acceptance criteria. Percent recovery exceedances ranged from 2.3 to 59 percent on the low end and
- 30 113 to 157 percent on the high end. In total, 284 sample results were associated with these surrogates.
- A total of 41 individual results required qualification as a result of surrogate recoveries reported outside
- 32 QC acceptance criteria. Table A-26 (Appendix A) lists the sample results that required qualification for
- 33 the year 2012.
- 34 In 2013, there were five surrogate percent recoveries that were outside of the laboratory-specified QC
- 35 acceptance criteria. Percent recovery exceedances ranged from 71 to 149 percent. In total, 2 sample
- 36 results were associated with these surrogates. No sample results required qualification as a result of
- 37 surrogate spikes reported outside QC acceptance criteria.
- In summary, there were 1,668 sample results associated with surrogate spike exceedances. This represents
- 39 1.2 percent of the total results in the 200-PO-1 Groundwater OU data set. A total of 219 individual
- sample results required qualification as a result of surrogate spike recoveries reported outside QC
- 41 acceptance criteria.

1 6.4 Sensitivity Analysis – Evaluation of Method Detection Limits

- 2 The groundwater data set consists of 102,727 individual analytical results. Of these, approximately
- 3 60,768 results (59 percent) were nondetected results. The range of method detection limits (MDLs)
- 4 reported for each analyte was compared to their respective comparison values (see definitions provided in
- 5 Section 5.1.2). The purpose of this evaluation is to determine if the MDL is adequate for confirming
- 6 absence at levels less than or equal to the pertinent criteria or standards. Tables 6-12 through 6-14
- 7 provides a comparison of the minimum and maximum MDLs to the comparison values selected for the
- 8 evaluation of results from monitoring wells located inland from the Columbia River. Tables 6-15
- 9 through 6-17 provides a comparison of the minimum and maximum MDLs to the comparison values
- selected for the evaluation of results from monitoring wells that have the potential to discharge to the
- 11 Columbia River. Comparison values are listed in Table 5-4.
- 12 A summary of analytes that report all MDLs less than or equal to their respective comparison value are
- shown in Tables 6-12 and 6-15. A summary of analytes that report all minimum MDLs less than or equal
- 14 to the respective comparison value but report a portion of maximum MDLs greater than the comparison
- value is shown in Tables 6-13 and 6-16. A summary of analytes that report all MDLs greater than the
- 16 comparison value is shown in Tables 6-14 and 6-17.
- 17 6.4.1 Method Detection Limit Results for Inland Groundwater Samples
- 18 As shown in Table 6-12, all MDLs for 195 analytes are less than or equal to their respective comparison
- value. Included in this group of analytes are 26 of the 42 COPCs identified in the RI/FS Work Plan
- 20 (DOE/RL-2007-31, Appendix A). The MDLs for all analytes listed in Table 6-12 are considered usable
- 21 for all RI/FS purposes.
- 22 As shown in Table 6-13, 30 analytes are reported with a portion of the MDLs greater than their respective
- comparison value. Included in this group of analytes are 14 of the 42 COPCs identified in the RI/FS Work
- 24 Plan (DOE/RL-2007-31, Appendix A). Analytes identified as COPCs and analytes with detections are
- discussed below.
- 26 1,1,2,2-Tetrachloroethane, 1,2-dichloroethane, benzene, dieldrin, heptachlor, heptachlor epoxide, and
- vinyl chloride were identified as COPCs in the RI/FS Work Plan (DOE/RL-2007-31, Appendix A).
- 28 These seven analytes were not detected in any of the groundwater samples, although a portion of the
- 29 MDLs are greater than their respective comparison value, all MDLs are less than the practical quantitation
- 30 limit listed in the RI/FS Work Plan. The results of these analyses are considered usable for concluding
- that these COPCs are absent at concentrations less than their respective comparison values.
- 32 Carbon tetrachloride and trichloroethene were identified as COPCs in the RI/FS Work Plan
- 33 (DOE/RL-2007-31, Appendix A). The laboratory cannot attain the comparison value for carbon
- 34 tetrachloride (0.63 μg/L) or trichloroethene (0.95 μg/L); therefore, nondetected concentrations are
- 35 reported as less than or equal to 1 µg/L. The MDLs reported for carbon tetrachloride and trichloroethene
- are less than the practical quantitation limit of 2 µg/L listed in Appendix A of the RI/FS Work Plan. Both
- analytes were detected in groundwater samples. MDLs for these analytes are considered usable because
- analytical laboratories generally cannot attain concentrations less than or equal to the comparison values.
- 39 Bromodichloromethane and dibromochloromethane were identified as COPCs in the RI/FS Work Plan
- 40 (DOE/RL-2007-31, Appendix A). The laboratory cannot attain the comparison value for
- 41 bromodichloromethane (0.71 μg/L) and dibromochloromethane (0.52 μg/L); therefore, nondetected
- 42 concentrations are reported as less than or equal to 1 μg/L. The MDLs reported for carbon tetrachloride
- and trichloroethene are also less than the practical quantitation limit of 5 μ g/L listed in Appendix A of the
- 44 RI/FS Work Plan. Both analytes were detected in groundwater samples. MDLs for these analytes are

- 1 considered usable because analytical laboratories generally cannot attain concentrations less than or equal
- 2 to the comparison values.
- 3 Iodine-129 was identified as a COPC in the RI/FS Work Plan (DOE/RL-2007-31, Appendix A). A small
- 4 percentage of MDLs for iodine-129 (12 of 207 MDLs) are greater than the comparison value of 1 pCi/L.
- 5 Detected concentrations of iodine-129 are reported at the same locations as elevated MDLs, confirming
- 6 the presence of iodine-129 at these wells. As a result, the MDLs for these samples are considered usable
- 7 for decision-making purposes.
- 8 Four metals (antimony, arsenic, beryllium, and cobalt) report a portion of their MDLs at
- 9 concentrations above the comparison values. Groundwater samples were analyzed using the following
- 10 analytical methods:
- Inductively coupled plasma (ICP)/atomic emission spectrometry (AES) using EPA Method 6010
- 12 (SW-846, Test Methods for Evaluation Solid Waste: Physical/Chemical Methods, Third Edition;
- 13 Final Update IV-B)
- ICP/mass spectrometry (MS) using EPA Method 200.8
- Results for each of these metals are presented separately based on the analytical method used
- 16 (e.g., Method 6010 results or Method 200.8 results) as shown in Table 6-13. MDLs for all four metals
- analyzed by Method 200.8 are reported at concentrations less than their respective comparison value;
- these results are considered usable for all RI/FS decision-making purposes.
- Antimony and beryllium have low detection frequencies (less than 5 percent and less than 0.2 percent,
- 20 respectively). Antimony and beryllium also report a high percentage of MDLs analyzed by Method 6010
- 21 that are greater than their respective comparison values. The MDL results reported by Method 6010 are
- 22 not considered usable for RI/FS decision-making purposes because they cannot be used to confirm their
- 23 absence at concentrations less than the comparison value. The following summarizes the number of MDL
- 24 results for antimony and beryllium analyzed by Method 6010 that are not considered usable:
- Total antimony: All 1,054 MDLs (100 percent) are greater than comparison value of 6 μg/L.
- **Dissolved antimony:** 916 of 952 MDLs (96 percent) are greater than comparison value of 6 μg/L.
- **Total beryllium:** 1,170 of 1,171 MDLs (greater than 99 percent) are greater than the comparison value of 4 μg/L.
- **Dissolved beryllium:** 1,050 of 1,051 MDLs (greater than 99 percent) are greater than the comparison value of 4 μg/L.
- 31 Arsenic has a high detection frequency (approximately 97 percent). However, all groundwater samples
- 32 analyzed by Method 6010 are reported as nondetected concentrations and report MDLs greater than the
- 33 comparison value. The MDL results reported by Method 6010 are not considered usable for RI/FS
- decision-making purposes because they cannot be used to confirm their absence at concentrations less
- 35 than the comparison value. The following summarizes the number of MDL results for arsenic analyzed by
- Method 6010 that are not considered usable:
- Total arsenic: All 8 MDLs (100 percent) are greater than the comparison value of 7.9 μg/L.
- **Dissolved arsenic:** All 13 MDLs (100 percent) are greater than the comparison value of 7.9 μg/L.

Table 6-12. Comparison of MDLs from 200-PO-1 Groundwater OU Non-River Exposure Areas to Human Health Comparison Values (All MDLs Less Than or Equal to Comparison Value)

Target Analyte	Filtered?	First Sample Date	Last Sample Date	Units	Number of Results	Number of Detects	Frequency of Detects (%)	Min. Nondetect	Max. Nondetect	Min. Detect	Max. Detect	Comparison Value	Comparison Value Basis	Is Min. Nondetect > Comparison Value?	Is Max. Nondetect > Comparison Value?
	-						Anions/C	Cations							
Chloride	No	1/2/2008	12/23/2013	μg/L	1,362	1,362	100			1,280	183,000	250,000	40 CFR 141, federal MCL	No	No
Cyanide	No	5/6/2008	10/1/2013	μg/L	28	0	0	2.8	4			4.8	WAC 173-340-720(4)(b)(iii)(A) and (B)	No	No
Fluoride	No	1/2/2008	12/23/2013	μg/L	1,362	1,314	96.48	46	360	39.4	1,200	960	WAC 173-340-720(4)(b)(iii)(A) and (B)	No	No
Nitrate	No	1/2/2008	12/23/2013	μg/L	1,359	1,349	99.26	38.1	274	145	172,000	45,000	40 CFR 141, federal MCL	No	No
Nitrite	No	1/2/2008	12/23/2013	μg/L	1,359	279	20.53	9.85	2,500	31.5	2,200	3,300	40 CFR 141, federal MCL	No	No
							Dioxins/l	Furans							
1,2,3,4,6,7,8-Heptachlorodibenzodioxin	No	3/16/2009	12/12/2012	μg/L	4	1	25	1.60E-06	2.60E-06	0.00011	0.00011	6.73E-05	WAC 173-340-720(4)(b)(iii)(A) and (B)	No	No
1,2,3,4,6,7,8-Heptachlorodibenzofuran	No	3/16/2009	12/12/2012	μg/L	4	1	25	9.50E-07	1.50E-06	6.00E-06	6.00E-06	6.73E-05	WAC 173-340-720(4)(b)(iii)(A) and (B)	No	No
1,2,3,4,7,8,9-Heptachlorodibenzofuran	No	3/16/2009	12/12/2012	μg/L	4	1	25	1.50E-06	2.40E-06	3.60E-06	3.60E-06	6.73E-05	WAC 173-340-720(4)(b)(iii)(A) and (B)	No	No
1,2,3,4,7,8-Hexachlorodibenzofuran	No	3/16/2009	12/12/2012	μg/L	4	1	25	6.80E-07	1.10E-06	5.00E-06	5.00E-06	6.73E-06	WAC 173-340-720(4)(b)(iii)(A) and (B)	No	No
1,2,3,4,7,8-Hexachlorodibenzo-p-dioxin	No	3/16/2009	12/12/2012	μg/L	4	1	25	1.30E-06	1.80E-06	1.70E-06	1.70E-06	6.73E-06	WAC 173-340-720(4)(b)(iii)(A) and (B)	No	No
1,2,3,6,7,8-Hexachlorodibenzofuran	No	3/16/2009	12/12/2012	μg/L	4	1	25	6.10E-07	1.10E-06	2.20E-06	2.20E-06	6.73E-06	WAC 173-340-720(4)(b)(iii)(A) and (B)	No	No
1,2,3,6,7,8-Hexachlorodibenzo-p-dioxin	No	3/16/2009	12/12/2012	μg/L	4	1	25	1.50E-06	2.00E-06	1.30E-05	1.30E-05	6.73E-06	WAC 173-340-720(4)(b)(iii)(A) and (B)	No	No
1,2,3,7,8,9-Hexachlorodibenzofuran	No	3/16/2009	12/12/2012	μg/L	4	1	25	8.70E-07	1.60E-06	7.60E-07	7.60E-07	6.73E-06	WAC 173-340-720(4)(b)(iii)(A) and (B)	No	No
1,2,3,7,8,9-Hexachlorodibenzo-p-dioxin	No	3/16/2009	12/12/2012	μg/L	4	1	25	1.30E-06	1.80E-06	7.80E-06	7.80E-06	6.73E-06	WAC 173-340-720(4)(b)(iii)(A) and (B)	No	No
1,2,3,7,8-Pentachlorodibenzofuran	No	3/16/2009	12/12/2012	μg/L	4	1	25	1.40E-06	1.90E-06	1.00E-06	1.00E-06	2.24E-05	WAC 173-340-720(4)(b)(iii)(A) and (B)	No	No
2,3,4,6,7,8-Hexachlorodibenzofuran	No	3/16/2009	12/12/2012	μg/L	4	1	25	6.90E-07	1.20E-06	7.50E-07	7.50E-07	6.73E-06	WAC 173-340-720(4)(b)(iii)(A) and (B)	No	No
2,3,4,7,8-Pentachlorodibenzofuran	No	3/16/2009	12/12/2012	μg/L	4	1	25	1.20E-06	1.70E-06	9.50E-07	9.50E-07	2.24E-06	WAC 173-340-720(4)(b)(iii)(A) and (B)	No	No
2,3,7,8-Tetrachlorodibenzofuran	No	3/16/2009	12/12/2012	μg/L	4	0	0	1.50E-07	4.00E-06			6.73E-06	WAC 173-340-720(4)(b)(iii)(A) and (B)	No	No
Octachlorodibenzofuran	No	3/16/2009	12/12/2012	μg/L	4	1	25	1.70E-06	3.00E-06	3.60E-05	3.60E-05	2.24E-03	WAC 173-340-720(4)(b)(iii)(A) and (B)	No	No
Octachlorodibenzo-p-dioxin	No	3/16/2009	12/12/2012	μg/L	4	1	25	1.40E-06	2.40E-06	7.80E-05	7.80E-05	2.24E-03	WAC 173-340-720(4)(b)(iii)(A) and (B)	No	No
							Herbio	eides							
2,4,5-T(2,4,5-Trichlorophenoxyacetic acid)	No	3/16/2009	12/12/2012	μg/L	4	0	0	0.081	0.16			160	WAC 173-340-720(4)(b)(iii)(A) and (B)	No	No
2,4,5-TP(2-(2,4,5-Trichlorophenoxy)propionic acid)Silvex	No	3/16/2009	12/12/2012	μg/L	4	0	0	0.069	0.14			128	WAC 173-340-720(4)(b)(iii)(A) and (B)	No	No
2,4-D(2,4-Dichlorophenoxyacetic acid)	No	3/16/2009	12/12/2012	μg/L	4	0	0	0.77	2			160	WAC 173-340-720(4)(b)(iii)(A) and (B)	No	No
2,4-DB(4-(2,4-Dichlorophenoxy)butanoic acid)	No	12/12/2012	12/12/2012	μg/L	1	0	0	2.5	2.5	-	-	128	WAC 173-340-720(4)(b)(iii)(A) and (B)	No	No
Dalapon	No	12/12/2012	12/12/2012	μg/L	1	0	0	3.8	3.8			240	WAC 173-340-720(4)(b)(iii)(A) and (B)	No	No
Dicamba	No	12/12/2012	12/12/2012	μg/L	1	0	0	0.28	0.28		32	480	WAC 173-340-720(4)(b)(iii)(A) and (B)	No	No
Dinoseb(2-secButyl-4,6-dinitrophenol)	No	1/25/2008	12/17/2013	μg/L	185	0	0	0.27	2.4		-	7.0	40 CFR 141, federal MCL	No	No

Table 6-12. Comparison of MDLs from 200-PO-1 Groundwater OU Non-River Exposure Areas to Human Health Comparison Values (All MDLs Less Than or Equal to Comparison Value)

Target Analyte	Filtered?	First Sample Date	Last Sample Date	Units	Number of Results	Number of Detects	Frequency of Detects (%)	Min. Nondetect	Max. Nondetect	Min. Detect	Max. Detect	Comparison Value	Comparison Value Basis	Is Min. Nondetect > Comparison Value?	Is Max. Nondetect > Comparison Value?
			1				Meta	als							
Aluminum	No	4/9/2010	12/20/2010	μg/L	82	20	24.39	5	10	9.65	539	16,000	WAC 173-340-720(4)(b)(iii)(A) and (B)	No	No
Aluminum	Yes	4/9/2010	12/20/2010	μg/L	82	2	2.44	5	10	5.52	29.9	16,000	WAC 173-340-720(4)(b)(iii)(A) and (B)	No	No
Barium	No	1/2/2008	12/23/2013	μg/L	1,265	1,265	100			11.9	259	2,000	40 CFR 141, federal MCL	No	No
Barium	Yes	1/2/2008	12/23/2013	μg/L	1,140	1,139	99.91	4	4	5.7	158	2,000	40 CFR 141, federal MCL	No	No
Boron	No	4/9/2010	12/20/2010	μg/L	81	23	28.4	19	41	19	107	3,200	WAC 173-340-720(4)(b)(iii)(A) and (B)	No	No
Boron	Yes	4/9/2010	12/20/2010	μg/L	82	25	30.49	19	41	19	144	3,200	WAC 173-340-720(4)(b)(iii)(A) and (B)	No	No
Cadmium	No	1/2/2008	12/23/2013	μg/L	1,265	7	0.55	0.1	4.1	4.1	18	5.0	40 CFR 141, federal MCL	No	No
Cadmium	Yes	1/2/2008	12/23/2013	μg/L	1,140	5	0.44	0.1	4.1	0.68	6.8	5.0	40 CFR 141, federal MCL	No	No
Chromium	No	1/2/2008	12/23/2013	μg/L	1,265	572	45.22	1	14	1.07	190	100	40 CFR 141, federal MCL	No	No
Chromium	Yes	1/2/2008	12/23/2013	μg/L	1,140	310	27.19	1	14	1.1	71.5	100	40 CFR 141, federal MCL	No	No
Copper	No	1/2/2008	12/23/2013	μg/L	1,265	94	7.43	0.1	6	0.271	37.8	640	WAC 173-340-720(4)(b)(iii)(A) and (B)	No	No
Copper	Yes	1/2/2008	12/23/2013	μg/L	1,140	51	4.47	0.1	6	0.348	20.4	640	WAC 173-340-720(4)(b)(iii)(A) and (B)	No	No
Hexavalent chromium	No	7/16/2008	12/17/2010	μg/L	55	8	14.55	2	2	2.2	191	48	WAC 173-340-720(4)(b)(iii)(A) and (B)	No	No
Hexavalent chromium	Yes	4/9/2010	12/17/2010	μg/L	53	9	16.98	2	2	2.7	5.9	48	WAC 173-340-720(4)(b)(iii)(A) and (B)	No	No
Iron	No	1/2/2008	12/23/2013	μg/L	1,261	912	72.32	9	40	9.7	37,100	11,200	WAC 173-340-720(4)(b)(iii)(A) and (B)	No	No
Iron	Yes	1/2/2008	12/23/2013	μg/L	1,135	472	41.59	9	40	9.5	1,760	11,200	WAC 173-340-720(4)(b)(iii)(A) and (B)	No	No
Lead	No	1/2/2008	12/23/2013	μg/L	328	102	31.1	0.1	0.49	0.0775	34.5	15	40 CFR 141, federal MCL	No	No
Lead	Yes	1/2/2008	12/23/2013	μg/L	321	24	7.48	0.05	0.49	0.056	4.71	15	40 CFR 141, federal MCL	No	No
Lithium	No	4/9/2010	12/20/2010	μg/L	81	60	74.07	4	4	4	31	32	WAC 173-340-720(4)(b)(iii)(A) and (B)	No	No
Lithium	Yes	4/9/2010	12/20/2010	μg/L	82	59	71.95	4	4	4	31	32	WAC 173-340-720(4)(b)(iii)(A) and (B)	No	No
Manganese	No	1/2/2008	12/23/2013	μg/L	1,265	279	22.06	0.96	6	1.1	930	384	WAC 173-340-720(4)(b)(iii)(A) and (B)	No	No
Manganese	Yes	1/2/2008	12/23/2013	μg/L	1,140	201	17.63	0.96	6	1	173	384	WAC 173-340-720(4)(b)(iii)(A) and (B)	No	No
Mercury	No	5/6/2008	12/12/2012	μg/L	61	0	0	0.05	0.1	0	0	2.0	40 CFR 141, federal MCL	No	No
Mercury	Yes	5/6/2008	12/12/2012	μg/L	63	0	0	0.05	0.1	0	0	2.0	40 CFR 141, federal MCL	No	No
Molybdenum	No	4/9/2010	12/20/2010	μg/L	82	82	100		-	0.628	11.4	80	WAC 173-340-720(4)(b)(iii)(A) and (B)	No	No
Molybdenum	Yes	4/9/2010	12/20/2010	μg/L	82	82	100			0.729	12.2	80	WAC 173-340-720(4)(b)(iii)(A) and (B)	No	No
Nickel	No	1/2/2008	12/23/2013	μg/L	1,265	404	31.94	4	66.5	4	233	100	40 CFR 141, federal MCL	No	No
Nickel	Yes	1/2/2008	12/23/2013	μg/L	1,140	249	21.84	4	66.5	4	220	100	40 CFR 141, federal MCL	No	No
Selenium	No	4/15/2008	12/12/2012	μg/L	84	69	82.14	0.48	6	0.63	6.77	80	WAC 173-340-720(4)(b)(iii)(A) and (B)	No	No
Selenium	Yes	4/15/2008	12/12/2012	μg/L	84	73	86.9	0.48	6	0.652	6.02	80	WAC 173-340-720(4)(b)(iii)(A) and (B)	No	No

Table 6-12. Comparison of MDLs from 200-PO-1 Groundwater OU Non-River Exposure Areas to Human Health Comparison Values (All MDLs Less Than or Equal to Comparison Value)

Target Analyte	Filtered?	First Sample Date	Last Sample Date	Units	Number of Results	Number of Detects	Frequency of Detects (%)	Min. Nondetect	Max. Nondetect	Min. Detect	Max. Detect	Comparison Value	Comparison Value Basis	Is Min. Nondetect > Comparison Value?	Is Max. Nondetect > Comparison Value?
Silver	No	1/2/2008	12/23/2013	μg/L	1,249	42	3.36	0.1	7	4	38	80	WAC 173-340-720(4)(b)(iii)(A) and (B)	No	No
Silver	Yes	1/2/2008	12/23/2013	μg/L	1,119	36	3.22	0.1	7	4.5	74	80	WAC 173-340-720(4)(b)(iii)(A) and (B)	No	No
Strontium	No	1/2/2008	12/23/2013	μg/L	1,253	1,252	99.92	4	4	21.9	902	9,600	WAC 173-340-720(4)(b)(iii)(A) and (B)	No	No
Strontium	Yes	1/2/2008	12/23/2013	μg/L	1,133	1,131	99.82	4	9	14	877	9,600	WAC 173-340-720(4)(b)(iii)(A) and (B)	No	No
Thallium	No	4/15/2008	12/17/2013	μg/L	113	0	0	0.05	0.1			0.5	40 CFR 141, federal MCLG	No	No
Thallium	Yes	4/15/2008	12/12/2012	μg/L	111	0	0	0.05	0.1			0.5	40 CFR 141, federal MCLG	No	No
Tin	No	4/9/2010	12/20/2010	μg/L	82	5	6.1	0.05	0.1	0.12	4.46	9,600	WAC 173-340-720(4)(b)(iii)(A) and (B)	No	No
Tin	Yes	4/9/2010	12/20/2010	μg/L	82	3	3.66	0.05	0.1	0.19	5.47	9,600	WAC 173-340-720(4)(b)(iii)(A) and (B)	No	No
Uranium	No	1/2/2008	12/17/2013	μg/L	310	306	98.71	0.05	0.1	0.080	151	30	40 CFR 141, federal MCL	No	No
Uranium	Yes	4/11/2011	4/11/2011	μg/L	1	1	100	0	0	2.74	2.74	30	40 CFR 141, federal MCL	No	No
Vanadium	No	1/2/2008	12/23/2013	μg/L	1,264	1,001	79.19	4.1	17	5.3	45	80	WAC 173-340-720(4)(b)(iii)(A) and (B)	No	No
Vanadium	Yes	1/2/2008	12/23/2013	μg/L	1,140	868	76.14	5	17	5.3	45.7	80	WAC 173-340-720(4)(b)(iii)(A) and (B)	No	No
Zinc	No	1/2/2008	12/23/2013	μg/L	1,265	344	27.19	4	9	4	10,200	4,800	WAC 173-340-720(4)(b)(iii)(A) and (B)	No	No
Zinc	Yes	1/2/2008	12/23/2013	μg/L	1,140	219	19.21	4	9	4	10,300	4,800	WAC 173-340-720(4)(b)(iii)(A) and (B)	No	No
	I.				1		Total Petroleum	Hydrocarbons			1			1	
Total petroleum hydrocarbons - diesel range	No	3/16/2009	12/17/2010	μg/L	55	1	1.82	70	70	100	100	500	WAC 173-340-900, Table 720-1	No	No
Total petroleum hydrocarbons - gasoline range	No	3/16/2009	3/17/2009	μg/L	3	0	0	50	50			1,000	WAC 173-340-900, Table 720-1	No	No
	1		, ,				Organochlorin	ne Pesticides		I	1	1			
4,4'-DDD (Dichlorodiphenyldichloroethane)	No	4/15/2008	12/12/2012	μg/L	33	0	0	0.0031	0.0095			0.36	WAC 173-340-720(4)(b)(iii)(A) and (B)	No	No
4,4'-DDE (Dichlorodiphenyldichloroethylene)	No	4/15/2008	12/12/2012	μg/L	33	0	0	0.0027	0.013			0.26	WAC 173-340-720(4)(b)(iii)(A) and (B)	No	No
4,4'-DDT (Dichlorodiphenyltrichloroethane)	No	4/15/2008	12/12/2012	μg/L	33	0	0	0.0056	0.022			0.26	WAC 173-340-720(4)(b)(iii)(A) and (B)	No	No
Alpha-BHC	No	4/15/2008	12/12/2012	μg/L	33	0	0	0.0025	0.0095			0.014	WAC 173-340-720(4)(b)(iii)(A) and (B)	No	No
Alpha Chlordane	No	12/17/2013	12/17/2013	μg/L	1	0	0	0.014	0.014			0.25	WAC 173-340-720(4)(b)(iii)(A) and (B)	No	No
beta-1,2,3,4,5,6-Hexachlorocyclohexane (beta-BHC)	No	4/15/2008	12/12/2012	μg/L	33	0	0	0.0065	0.015			0.049	WAC 173-340-720(4)(b)(iii)(A) and (B)	No	No
Chlordane	No	4/15/2008	12/12/2012	μg/L	33	0	0	0.032	0.18			0.25	WAC 173-340-720(4)(b)(iii)(A) and (B)	No	No
Endosulfan I	No	4/15/2008	12/12/2012	μg/L	33	0	0	0.0025	0.018			96.0	WAC 173-340-720(4)(b)(iii)(A) and (B)	No	No
Endosulfan II	No	4/15/2008	12/12/2012	μg/L	33	0	0	0.0032	0.01			96.0	WAC 173-340-720(4)(b)(iii)(A) and (B)	No	No
Endrin	No	4/15/2008	12/12/2012	μg/L	33	0	0	0.0028	0.017			2.0	40 CFR 141, federal MCL	No	No
Gamma-BHC (Lindane)	No	4/15/2008	12/12/2012	μg/L	33	0	0	0.0025	0.0095			0.080	WAC 173-340-720(4)(b)(iii)(A) and (B)	No	No
Methoxychlor	No	4/15/2008	12/12/2012	μg/L	33	0	0	0.005	0.012			40.0	40 CFR 141, federal MCL	No	No
Trans chlordane	No	12/17/2013	12/17/2013	μg/L	1	0	0	0.0095	0.0095			0.25	WAC 173-340-720(4)(b)(iii)(A) and (B)	No	No

Table 6-12. Comparison of MDLs from 200-PO-1 Groundwater OU Non-River Exposure Areas to Human Health Comparison Values (All MDLs Less Than or Equal to Comparison Value)

Target Analyte	Filtered?	First Sample Date	Last Sample Date	Units	Number of Results	Number of Detects	Frequency of Detects (%)	Min. Nondetect	Max. Nondetect	Min. Detect	Max. Detect	Comparison Value	Comparison Value Basis	Is Min. Nondetect > Comparison Value?	Is Max. Nondetect > Comparison Value?
					I		Polychlorinate	d Biphenyls							
Aroclor-1016	No	3/16/2009	12/12/2012	μg/L	4	0	0	0.09	0.21			1.1	WAC 173-340-720(4)(b)(iii)(A) and (B)	No	No
		1			1		Radionu	clides	'		1				
Americium-241	No	4/9/2010	12/17/2010	pCi/L	52	1	1.92	-0.16	2.1	0.11	0.11	15	40 CFR 141, federal MCL	No	No
Carbon-14	No	4/9/2010	12/17/2010	pCi/L	52	16	30.77	-3.15	7.8	8.18	15.9	2,000	40 CFR 141, federal MCL	No	No
Cesium-137	No	1/2/2008	10/22/2013	pCi/L	137	0	0	-5.3	8.8			200	40 CFR 141, federal MCL	No	No
Cobalt-60	No	1/2/2008	10/22/2013	pCi/L	137	0	0	-8.5	6.4			100	40 CFR 141, federal MCL	No	No
Europium-152	No	1/2/2008	10/22/2013	pCi/L	137	0	0	-19	16			200	40 CFR 141, federal MCL	No	No
Europium-154	No	1/2/2008	10/22/2013	pCi/L	137	0	0	-26	29			60	40 CFR 141, federal MCL	No	No
Europium-155	No	1/2/2008	10/22/2013	pCi/L	137	0	0	-34	9.2			600	40 CFR 141, federal MCL	No	No
Gross alpha	No	1/2/2008	12/23/2013	pCi/L	755	405	53.64	-13	11	0.72	89	15	40 CFR 141, federal MCL	No	No
Neptunium-237	No	4/15/2008	4/29/2009	pCi/L	29	0	0	-0.086	0.061			15	40 CFR 141, federal MCL	No	No
Protactinium-231	No	4/15/2008	4/29/2009	pCi/L	29	4	13.79	-0.044	0.29	0.15	0.308	15	40 CFR 141, federal MCL	No	No
Selenium-79	No	7/10/2008	4/29/2009	pCi/L	28	2	7.14	-7.6	5.26	6	32.8	7.3	EPA Method 2013	No	No
Strontium-90	No	1/2/2008	12/23/2013	pCi/L	371	42	11.32	-2,000	2	0.64	30	8.0	40 CFR 141, federal MCL	No	No
Technetium-99	No	1/2/2008	12/23/2013	pCi/L	550	430	78.18	-16	7.8	6.7	8,000	900	40 CFR 141, federal MCL	No	No
Tritium	No	1/2/2008	12/23/2013	pCi/L	751	662	88.15	-370	290	190	1,100,000	20,000	40 CFR 141, federal MCL	No	No
	-					\$	Semivolatile Orga	nic Compounds			1				
1,2,4,5-Tetrachlorobenzene	No	3/16/2009	12/17/2013	μg/L	39	0	0	0.9	2.5			4.8	WAC 173-340-720(4)(b)(iii)(A) and (B)	No	No
1,2-Dichlorobenzene	No	3/16/2009	12/17/2013	μg/L	40	0	0	0.9	1	-		600	40 CFR 141, federal MCL	No	No
2,3,4,6-Tetrachlorophenol	No	1/25/2008	12/17/2013	μg/L	185	0	0	0.9	2.1			480	WAC 173-340-720(4)(b)(iii)(A) and (B)	No	No
2,4,5-Trichlorophenol	No	1/25/2008	12/17/2013	μg/L	186	0	0	0.9	2.2			800	WAC 173-340-720(4)(b)(iii)(A) and (B)	No	No
2,4,6-Trichlorophenol	No	1/25/2008	12/17/2013	μg/L	186	0	0	0.9	2.2			4.0	WAC 173-340-720(4)(b)(iii)(A) and (B)	No	No
2,4-Dichlorophenol	No	1/25/2008	12/17/2013	μg/L	273	0	0	0.48	2.1			24	WAC 173-340-720(4)(b)(iii)(A) and (B)	No	No
2,4-Dimethylphenol	No	1/25/2008	12/17/2013	μg/L	186	0	0	1	2.1			160	WAC 173-340-720(4)(b)(iii)(A) and (B)	No	No
2,4-Dinitrophenol	No	1/25/2008	12/17/2013	μg/L	214	0	0	0.9	10	-		32	WAC 173-340-720(4)(b)(iii)(A) and (B)	No	No
2,6-Dinitrotoluene	No	3/16/2009	12/17/2013	μg/L	40	1	2.5	0.9	2.2	17	17	16	WAC 173-340-720(4)(b)(iii)(A) and (B)	No	No
2-Chloronaphthalene	No	3/16/2009	12/17/2013	μg/L	40	0	0	0.9	1		-	640	WAC 173-340-720(4)(b)(iii)(A) and (B)	No	No
2-Chlorophenol	No	1/25/2008	12/17/2013	μg/L	243	0	0	0.48	2.2			40	WAC 173-340-720(4)(b)(iii)(A) and (B)	No	No
2-Hexanone	No	4/15/2008	12/17/2013	μg/L	123	0	0	0.08	5			40	WAC 173-340-720(4)(b)(iii)(A) and (B)	No	No
2-Methylnaphthalene	No	3/16/2009	12/17/2013	μg/L	40	0	0	0.9	1			32	WAC 173-340-720(4)(b)(iii)(A) and (B)	No	No

Table 6-12. Comparison of MDLs from 200-PO-1 Groundwater OU Non-River Exposure Areas to Human Health Comparison Values (All MDLs Less Than or Equal to Comparison Value)

Target Analyte	Filtered?	First Sample Date	Last Sample Date	Units	Number of Results	Number of Detects	Frequency of Detects (%)	Min. Nondetect	Max. Nondetect	Min. Detect	Max. Detect	Comparison Value	Comparison Value Basis	Is Min. Nondetect > Comparison Value?	Is Max. Nondetect > Comparison Value?
2-Methylphenol (cresol, o-)	No	1/25/2008	12/17/2013	μg/L	274	0	0	0.48	2.2			400	WAC 173-340-720(4)(b)(iii)(A) and (B)	No	No
2-Nitroaniline	No	3/16/2009	12/17/2013	μg/L	41	0	0	0.9	2			160	WAC 173-340-720(4)(b)(iii)(A) and (B)	No	No
3-Nitroaniline	No	3/16/2009	12/17/2013	μg/L	40	0	0	0.9	1			4.2	WAC 173-340-720(4)(b)(iii)(A) and (B)	No	No
4-Chloro-3-methylphenol	No	1/25/2008	12/17/2013	μg/L	243	0	0	0.48	2.4			1,600	WAC 173-340-720(4)(b)(iii)(A) and (B)	No	No
4-Methylphenol (cresol, p-)	No	3/16/2009	12/20/2010	μg/L	36	0	0	10	20			800	WAC 173-340-720(4)(b)(iii)(A) and (B)	No	No
4-Nitroaniline	No	3/16/2009	12/17/2013	μg/L	40	0	0	0.9	1.6			4.4	WAC 173-340-720(4)(b)(iii)(A) and (B)	No	No
5-Nitro-o-toluidine	No	3/16/2009	12/17/2013	μg/L	39	0	0	0.9	1			9.7	WAC 173-340-720(4)(b)(iii)(A) and (B)	No	No
Acenaphthene	No	2/21/2008	12/17/2013	μg/L	99	0	0	0.5	2.5			480	WAC 173-340-720(4)(b)(iii)(A) and (B)	No	No
Acetophenone	No	3/16/2009	12/17/2013	μg/L	39	0	0	0.9	1.2			800	WAC 173-340-720(4)(b)(iii)(A) and (B)	No	No
Aniline	No	3/16/2009	12/17/2013	μg/L	39	0	0	0.9	2			7.7	WAC 173-340-720(4)(b)(iii)(A) and (B)	No	No
Anthracene	No	3/16/2009	12/17/2013	μg/L	40	0	0	0.9	1			2,400	WAC 173-340-720(4)(b)(iii)(A) and (B)	No	No
Benzyl alcohol	No	3/16/2009	12/17/2013	μg/L	39	1	2.56	0.9	1	1.1	1.1	800	WAC 173-340-720(4)(b)(iii)(A) and (B)	No	No
Bis(2-Chloroethoxy)methane	No	3/16/2009	12/17/2013	μg/L	40	0	0	0.9	1			48.0	WAC 173-340-720(4)(b)(iii)(A) and (B)	No	No
Bis(2-ethylhexyl) phthalate	No	2/21/2008	12/17/2013	μg/L	129	14	10.85	0.7	1	1	14	6.0	40 CFR 141, federal MCL	No	No
Butylbenzylphthalate	No	3/16/2009	12/17/2013	μg/L	40	1	2.5	0.9	1	1.3	1.3	46.0	WAC 173-340-720(4)(b)(iii)(A) and (B)	No	No
Carbazole	No	10/14/2009	12/17/2013	μg/L	37	0	0	0.9	1			4.4	WAC 173-340-720(4)(b)(iii)(A) and (B)	No	No
Chrysene	No	3/16/2009	12/17/2013	μg/L	40	0	0	0.9	1			1.2	WAC 173-340-720(4)(b)(iii)(A) and (B)	No	No
Dibenzofuran	No	3/16/2009	12/17/2013	μg/L	40	0	0	0.9	1			8.0	WAC 173-340-720(4)(b)(iii)(A) and (B)	No	No
Diethylphthalate	No	3/16/2009	12/17/2013	μg/L	40	1	2.5	0.9	1	1.7	1.7	12,800	WAC 173-340-720(4)(b)(iii)(A) and (B)	No	No
Dimethoate	No	4/15/2008	12/17/2013	μg/L	68	0	0	0.9	1.1			3.2	WAC 173-340-720(4)(b)(iii)(A) and (B)	No	No
Di-n-butylphthalate	No	3/16/2009	12/17/2013	μg/L	40	0	0	0.9	1			1,600	WAC 173-340-720(4)(b)(iii)(A) and (B)	No	No
Fluoranthene	No	3/16/2009	12/17/2013	μg/L	40	0	0	0.9	1			640	WAC 173-340-720(4)(b)(iii)(A) and (B)	No	No
Fluorene	No	3/16/2009	12/17/2013	μg/L	40	0	0	0.9	1			320	WAC 173-340-720(4)(b)(iii)(A) and (B)	No	No
Hexachlorocyclopentadiene	No	3/16/2009	12/17/2013	μg/L	40	0	0	0.9	1			48	WAC 173-340-720(4)(b)(iii)(A) and (B)	No	No
Hexachloroethane	No	3/16/2009	12/17/2013	μg/L	40	0	0	0.9	1			1.1	WAC 173-340-720(4)(b)(iii)(A) and (B)	No	No
Isophorone	No	3/16/2009	12/17/2013	μg/L	40	0	0	0.9	1			46	WAC 173-340-720(4)(b)(iii)(A) and (B)	No	No
m-Dinitrobenzene	No	3/16/2009	12/17/2013	μg/L	39	0	0	0.9	1			1.6	WAC 173-340-720(4)(b)(iii)(A) and (B)	No	No
Methyl parathion	No	3/16/2009	12/17/2013	μg/L	39	0	0	0.9	1			4.0	WAC 173-340-720(4)(b)(iii)(A) and (B)	No	No
Naphthalene	No	2/21/2008	12/17/2013	μg/L	129	0	0	0.5	2			160	WAC 173-340-720(4)(b)(iii)(A) and (B)	No	No
Nitrobenzene	No	4/15/2008	12/17/2013	μg/L	69	0	0	0.9	1			16.0	WAC 173-340-720(4)(b)(iii)(A) and (B)	No	No
n-Nitrosodiphenylamine	No	3/16/2009	12/20/2010	μg/L	37	0	0	1	1			18.0	WAC 173-340-720(4)(b)(iii)(A) and (B)	No	No

Table 6-12. Comparison of MDLs from 200-PO-1 Groundwater OU Non-River Exposure Areas to Human Health Comparison Values (All MDLs Less Than or Equal to Comparison Value)

Target Analyte	Filtered?	First Sample Date	Last Sample Date	Units	Number of Results	Number of Detects	Frequency of Detects (%)	Min. Nondetect	Max. Nondetect	Min. Detect	Max. Detect	Comparison Value	Comparison Value Basis	Is Min. Nondetect > Comparison Value?	Is Max. Nondetect > Comparison Value?
Parathion	No	3/16/2009	12/17/2013	μg/L	39	0	0	0.9	1			96.0	WAC 173-340-720(4)(b)(iii)(A) and (B)	No	No
Pentachlorobenzene	No	3/16/2009	12/17/2013	μg/L	39	0	0	0.9	1			13.0	WAC 173-340-720(4)(b)(iii)(A) and (B)	No	No
Phenacetin	No	3/16/2009	12/17/2013	μg/L	39	0	0	0.9	1			40.0	WAC 173-340-720(4)(b)(iii)(A) and (B)	No	No
Phenol	No	1/25/2008	12/17/2013	μg/L	286	0	0	0.48	4			2,400	WAC 173-340-720(4)(b)(iii)(A) and (B)	No	No
Phorate	No	3/16/2009	12/17/2013	μg/L	39	0	0	0.9	1			3.2	WAC 173-340-720(4)(b)(iii)(A) and (B)	No	No
p-Phenylenediamine	No	3/16/2009	12/17/2013	μg/L	39	0	0	0.9	1			3,040	WAC 173-340-720(4)(b)(iii)(A) and (B)	No	No
Pronamide	No	3/16/2009	12/17/2013	μg/L	39	0	0	0.9	1			1,200	WAC 173-340-720(4)(b)(iii)(A) and (B)	No	No
Pyrene	No	2/21/2008	12/17/2013	μg/L	99	0	0	0.48	1			240	WAC 173-340-720(4)(b)(iii)(A) and (B)	No	No
Pyridine	No	3/16/2009	12/17/2013	μg/L	39	0	0	0.9	5.7			8.0	WAC 173-340-720(4)(b)(iii)(A) and (B)	No	No
sym-Trinitrobenzene	No	3/16/2009	12/17/2013	μg/L	39	0	0	0.9	1.4			480	WAC 173-340-720(4)(b)(iii)(A) and (B)	No	No
Tetraethyl dithiopyrophosphate (Sulfotepp)	No	3/16/2009	12/17/2013	μg/L	39	0	0	0.9	1			8.0	WAC 173-340-720(4)(b)(iii)(A) and (B)	No	No
Total Cresols	No	4/12/2012	5/20/2013	μg/L	4	0	0	0.9	1			1,600	WAC 173-340-720(4)(b)(iii)(A) and (B)	No	No
Tributyl Phosphate	No	2/21/2008	12/17/2013	μg/L	128	4	3.13	0.48	1.5	1.8	6.7	9.7	WAC 173-340-720(4)(b)(iii)(A) and (B)	No	No
Tris-2-chloroethyl phosphate	No	2/21/2008	5/20/2013	μg/L	89	0	0	0.5	1.2			4.4	WAC 173-340-720(4)(b)(iii)(A) and (B)	No	No
			.1	ļ			Volatile Organi	c Compounds	1.	I	1	1			
1,1,1,2-Tetrachloroethane	No	4/15/2008	12/17/2013	μg/L	123	0	0	0.09	1			1.7	WAC 173-340-720(4)(b)(iii)(A) and (B)	No	No
1,1,1-Trichloroethane	No	2/13/2008	12/17/2013	μg/L	524	30	5.73	0.067	1	0.15	1.5	200	40 CFR 141, federal MCL	No	No
1,1-Dichloroethane	No	2/13/2008	12/17/2013	μg/L	524	12	2.29	0.046	1	0.09	0.25	7.7	WAC 173-340-720(4)(b)(iii)(A) and (B)	No	No
1,1-Dichloroethene	No	2/13/2008	12/17/2013	μg/L	524	3	0.57	0.045	1	0.14	0.19	7.0	40 CFR 141, federal MCL	No	No
1,2-Dichloroethene (Total)	No	4/15/2008	12/17/2013	μg/L	123	0	0	0.13	1			72.0	WAC 173-340-720(4)(b)(iii)(A) and (B)	No	No
1,2-Dichloropropane	No	4/15/2008	12/17/2013	μg/L	123	0	0	0.054	1		-	1.2	WAC 173-340-720(4)(b)(iii)(A) and (B)	No	No
1,4-Dichlorobenzene	No	2/13/2008	12/17/2013	μg/L	538	0	0	0.1	1			8.1	WAC 173-340-720(4)(b)(iii)(A) and (B)	No	No
1-Butanol	No	2/13/2008	12/17/2013	μg/L	523	0	0	8.1	100			800	WAC 173-340-720(4)(b)(iii)(A) and (B)	No	No
2-Butanone	No	2/13/2008	12/17/2013	μg/L	524	0	0	0.52	1.8			4,800	WAC 173-340-720(4)(b)(iii)(A) and (B)	No	No
4-Methyl-2-pentanone	No	2/13/2008	12/17/2013	μg/L	524	0	0	0.12	1			640	WAC 173-340-720(4)(b)(iii)(A) and (B)	No	No
Acetone	No	2/13/2008	12/17/2013	μg/L	518	21	4.05	0.34	5	0.4	37	7,200	WAC 173-340-720(4)(b)(iii)(A) and (B)	No	No
Allyl Chloride	No	4/15/2008	12/17/2013	μg/L	123	0	0	0.091	1			2.1	WAC 173-340-720(4)(b)(iii)(A) and (B)	No	No
Bromoform	No	4/15/2008	12/17/2013	μg/L	123	6	4.88	0.094	1	1.6	2.9	5.5	WAC 173-340-720(4)(b)(iii)(A) and (B)	No	No
Bromomethane	No	4/15/2008	12/17/2013	μg/L	123	24	19.51	0.084	2	0.33	4.5	11.0	WAC 173-340-720(4)(b)(iii)(A) and (B)	No	No
Carbon Disulfide	No	2/13/2008	12/17/2013	μg/L	524	6	1.15	0.029	1	0.053	0.21	800	WAC 173-340-720(4)(b)(iii)(A) and (B)	No	No
Chlorobenzene	No	2/13/2008	12/17/2013	μg/L	502	0	0	0.06	1			100	40 CFR 141, federal MCL	No	No

Table 6-12. Comparison of MDLs from 200-PO-1 Groundwater OU Non-River Exposure Areas to Human Health Comparison Values (All MDLs Less Than or Equal to Comparison Value)

Target Analyte	Filtered?	First Sample Date	Last Sample Date	Units	Number of Results	Number of Detects	Frequency of Detects (%)	Min. Nondetect	Max. Nondetect	Min. Detect	Max. Detect	Comparison Value	Comparison Value Basis	Is Min. Nondetect > Comparison Value?	Is Max. Nondetect > Comparison Value?
Chloroform	No	2/13/2008	12/17/2013	μg/L	524	42	8.02	0.067	1	0.086	7.1	1.4	WAC 173-340-720(4)(b)(iii)(A) and (B)	No	No
Chloroprene	No	4/15/2008	12/17/2013	μg/L	123	0	0	0.083	1			160	WAC 173-340-720(4)(b)(iii)(A) and (B)	No	No
cis-1,2-Dichloroethylene	No	2/13/2008	12/17/2013	μg/L	524	0	0	0.048	1			16.0	WAC 173-340-720(4)(b)(iii)(A) and (B)	No	No
Dibromomethane	No	4/15/2008	12/17/2013	μg/L	123	0	0	0.095	1			80.0	WAC 173-340-720(4)(b)(iii)(A) and (B)	No	No
Dichlorodifluoromethane	No	4/15/2008	12/17/2013	μg/L	123	0	0	0.058	2			1,600	WAC 173-340-720(4)(b)(iii)(A) and (B)	No	No
Ethyl Methacrylate	No	4/15/2008	12/17/2013	μg/L	123	1	0.81	0.11	1	0.82	0.82	720	WAC 173-340-720(4)(b)(iii)(A) and (B)	No	No
Ethylbenzene	No	2/13/2008	12/17/2013	μg/L	523	1	0.19	0.061	1	2.1	2.1	4.0	WAC 173-340-720(4)(b)(iii)(A) and (B)	No	No
Hexane	No	4/15/2008	1/15/2009	μg/L	28	0	0	0.16	0.16	-		480	WAC 173-340-720(4)(b)(iii)(A) and (B)	No	No
Isobutyl Alcohol	No	4/15/2008	12/17/2013	μg/L	123	0	0	5	200			2,400	WAC 173-340-720(4)(b)(iii)(A) and (B)	No	No
Methyl Methacrylate	No	4/15/2008	12/17/2013	μg/L	123	0	0	0.26	2			11,200	WAC 173-340-720(4)(b)(iii)(A) and (B)	No	No
Methylene Chloride	No	2/13/2008	12/17/2013	μg/L	523	14	2.68	0.091	1	0.39	88	5.0	40 CFR 141, federal MCL	No	No
Styrene	No	4/15/2008	12/17/2013	μg/L	122	0	0	0.036	1			1,600	WAC 173-340-720(4)(b)(iii)(A) and (B)	No	No
Tetrachloroethene	No	2/13/2008	12/17/2013	μg/L	523	59	11.28	0.065	1	0.28	4.5	5.0	40 CFR 141, federal MCL	No	No
Tetrahydrofuran	No	2/13/2008	12/17/2013	μg/L	524	0	0	1.1	7.5			14,400	WAC 173-340-720(4)(b)(iii)(A) and (B)	No	No
Toluene	No	2/13/2008	12/17/2013	μg/L	523	3	0.57	0.029	1	0.029	1.4	640	WAC 173-340-720(4)(b)(iii)(A) and (B)	No	No
trans-1,2-Dichloroethylene	No	2/13/2008	12/17/2013	μg/L	524	0	0	0.081	1			100	40 CFR 141, federal MCL	No	No
Trichloromonofluoromethane	No	4/15/2008	12/17/2013	μg/L	123	4	3.25	0.041	1	0.29	0.58	2,400	WAC 173-340-720(4)(b)(iii)(A) and (B)	No	No
Vinyl Acetate	No	4/15/2008	12/17/2013	μg/L	123	0	0	0.17	2			8,000	WAC 173-340-720(4)(b)(iii)(A) and (B)	No	No
Xylenes (Total)	No	2/13/2008	12/17/2013	μg/L	523	2	0.38	0.11	1.6	1.4	4.1	1,600	WAC 173-340-720(4)(b)(iii)(A) and (B)	No	No

Table 6-13. Comparison of MDLs from 200-PO-1 Groundwater OU Non-River Exposure Areas to Human Health Comparison Values (Some MDLs Less Than or Equal to Comparison Value)

Target Analyte	Filtered?	First Sample Date	Last Sample Date	Units	Number of Results	Number of Detects	Frequency of Detects (%)	Min. Nondetect	Max. Nondetect	Min. Detect	Max. Detect	Comparison Value	Comparison Value Basis	Is Min. Nondetect > Comparison Value?	Is Max. Nondetect > Comparison Value?
							Di	oxins/Furans							
1,2,3,7,8-Pentachlorodibenzo-p-dioxin	No	3/16/2009	12/12/2012	μg/L	4	0	0	1.40E-07	2.30E-06			6.73E-07	WAC 173-340-720(4)(b)(iii)(A) and (B)	No	Yes
2,3,7,8-Tetrachlorodibenzo-p-dioxin	No	3/16/2009	12/12/2012	μg/L	4	0	0	1.60E-07	6.10E-06	1		6.73E-07	WAC 173-340-720(4)(b)(iii)(A) and (B)	No	Yes
		1						Metals							
Antimony (all results)	No	1/2/2008	12/23/2013	μg/L	1,265	61	4.82	0.1	60	0.10	104	6.0	40 CFR 141, federal MCL	No	Yes
Antimony (all results)	Yes	1/2/2008	12/23/2013	μg/L	1,140	42	3.68	0.1	60	0.11	82.7	6.0	40 CFR 141, federal MCL	No	Yes
Antimony (Method 6010 results)	No	1/2/2008	12/23/2013	μg/L	1,092	38	3.48	4	60	4.1	104	6.0	40 CFR 141, federal MCL	No	Yes
Antimony (Method 6010 results)	Yes	1/2/2008	12/23/2013	μg/L	967	15	1.55	4	60	33.5	82.7	6.0	40 CFR 141, federal MCL	No	Yes
Antimony (Method 200.8 results)	No	4/9/2010	10/14/2013	μg/L	173	23	13.29	0.1	0.6	0.10	0.24	6.0	40 CFR 141, federal MCL	No	No
Antimony (Method 200.8 results)	Yes	4/9/2010	10/14/2013	μg/L	173	27	15.61	0.1	0.6	0.11	0.31	6.0	40 CFR 141, federal MCL	No	No
Arsenic (all results)	No	1/3/2008	12/23/2013	μg/L	633	617	97.47	0.4	30	0.79	14.9	7.9	DOE/RL-96-61, Table ES-1	No	Yes
Arsenic (all results)	Yes	1/3/2008	12/23/2013	μg/L	537	517	96.28	0.4	30	0.63	13.9	7.9	DOE/RL-96-61, Table ES-1	No	Yes
Arsenic (Method 6010 results)	No	10/22/2013	12/23/2013	μg/L	8	0	0	25	30		F	7.9	DOE/RL-96-61, Table ES-1	Yes	Yes
Arsenic (Method 6010 results)	Yes	11/14/2013	12/23/2013	μg/L	13	0	0	25	30	=	-	7.9	DOE/RL-96-61, Table ES-1	Yes	Yes
Arsenic (Method 200.8 results)	No	1/3/2008	12/23/2013	μg/L	606	600	99.0	0.4	0.8	0.79	14.9	7.9	DOE/RL-96-61, Table ES-1	No	No
Arsenic (Method 200.8 results)	Yes	1/3/2008	10/14/2013	μg/L	507	502	99.0	0.4	0.8	0.63	13.9	7.9	DOE/RL-96-61, Table ES-1	No	No
Beryllium (all results)	No	1/2/2008	12/23/2013	μg/L	1,253	1	0.08	0.05	4.1	9.4	9.4	4.0	40 CFR 141, federal MCL	No	Yes
Beryllium (all results)	Yes	1/2/2008	12/23/2013	μg/L	1,133	2	0.18	0.05	4.1	0.13	0.76	4.0	40 CFR 141, federal MCL	No	Yes
Beryllium (Method 6010 results)	No	1/2/2008	12/23/2013	μg/L	1,171	1	0.09	0.5	4.1	9.4	9.4	4.0	40 CFR 141, federal MCL	No	Yes
Beryllium (Method 6010 results)	Yes	1/2/2008	12/23/2013	μg/L	1,051	1	0.01	0.5	4.1	0.76	0.76	4.0	40 CFR 141, federal MCL	No	Yes
Beryllium (Method 200.8 results)	No	4/9/2010	12/20/2010	μg/L	82	0	0	0.05	0.1			4.0	40 CFR 141, federal MCL	No	No
Beryllium (Method 200.8 results)	Yes	4/9/2010	12/20/2010	μg/L	82	1	1.22	0.05	0.1			4.0	40 CFR 141, federal MCL	No	No
Cobalt (all results)	No	1/2/2008	12/23/2013	μg/L	1,265	23	1.82	0.05	5	0.121	19.1	4.8	WAC 173-340-720(4)(b)(iii)(A) and (B)	No	Yes
Cobalt (all results)	Yes	1/2/2008	12/23/2013	μg/L	1,140	87	7.63	0.05	5	0.076	13.3	4.8	WAC 173-340-720(4)(b)(iii)(A) and (B)	No	Yes
Cobalt (Method 6010 results)	No	1/2/2008	12/23/2013	μg/L	1,183	8	0.68	4	5	4	19.1	4.8	WAC 173-340-720(4)(b)(iii)(A) and (B)	No	Yes
Cobalt (Method 6010 results)	Yes	1/2/2008	12/23/2013	μg/L	1,058	52	4.91	4	5	4	13.3	4.8	WAC 173-340-720(4)(b)(iii)(A) and (B)	No	Yes
Cobalt (Method 200.8 results)	No	4/9/2010	12/20/2010	μg/L	82	15	18.29	0.05	0.1	0.12	1	4.8	WAC 173-340-720(4)(b)(iii)(A) and (B)	No	No
Cobalt (Method 200.8 results)	Yes	4/9/2010	12/20/2010	μg/L	82	35	42.68	0.05	0.1	0.076	2.2	4.8	WAC 173-340-720(4)(b)(iii)(A) and (B)	No	No

Table 6-13. Comparison of MDLs from 200-PO-1 Groundwater OU Non-River Exposure Areas to Human Health Comparison Values (Some MDLs Less Than or Equal to Comparison Value)

Target Analyte	Filtered?	First Sample Date	Last Sample Date	Units	Number of Results	Number of Detects	Frequency of Detects (%)	Min. Nondetect	Max. Nondetect	Min. Detect	Max. Detect	Comparison Value	Comparison Value Basis	Is Min. Nondetect > Comparison Value?	Is Max. Nondetect > Comparison Value?
	I	1					Organo	chlorine Pesticio	des						
Dieldrin	No	4/15/2008	12/12/2012	μg/L	33	0	0	0.0023	0.0095	7		0.0055	WAC 173-340-720(4)(b)(iii)(A) and (B)	No	Yes
Heptachlor	No	4/15/2008	12/12/2012	μg/L	33	0	0	0.0025	0.034	-	7	0.019	WAC 173-340-720(4)(b)(iii)(A) and (B)	No	Yes
Heptachlor epoxide	No	4/15/2008	12/12/2012	μg/L	33	0	0	0.0032	0.016	-		0.0048	WAC 173-340-720(4)(b)(iii)(A) and (B)	No	Yes
							R	adionuclides							
Iodine-129	No	1/3/2008	12/23/2013	pCi/L	556	349	62.77	-1.61	5.58	0.167	11.4	1.0	40 CFR 141, federal MCL	No	Yes
					1		Semivolatile	Organic Comp	oounds						
1,2,4-Trichlorobenzene	No	2/21/2008	12/17/2013	μg/L	99	0	0	0.7	2.1	3 	5	1.5	WAC 173-340-720(4)(b)(iii)(A) and (B)	No	Yes
4,6-Dinitro-2-methylphenol	No	1/25/2008	12/17/2013	μg/L	186	0	0	0.9	2.2	-		1.3	WAC 173-340-720(4)(b)(iii)(A) and (B)	No	Yes
Aramite	No	3/16/2009	12/17/2013	μg/L	39	0	0	0.9	20	Œ	5	3.5	WAC 173-340-720(4)(b)(iii)(A) and (B)	No	Yes
Diallate	No	3/16/2009	12/17/2013	μg/L	39	0	0	0.9	2	5==		1.4	WAC 173-340-720(4)(b)(iii)(A) and (B)	No	Yes
Hexachlorophene	No	3/16/2009	12/17/2013	μg/L	39	0	0	0.9	10	-)	4.8	WAC 173-340-720(4)(b)(iii)(A) and (B)	No	Yes
							Volatile (Organic Compo	unds						
1,1,2,2-Tetrachloroethane	No	4/15/2008	12/17/2013	μg/L	123	0	0	0.098	1	>		0.22	WAC 173-340-720(4)(b)(iii)(A) and (B)	No	Yes
1,1,2-Trichloroethane	No	2/13/2008	12/17/2013	μg/L	524	0	0	0.063	1	-	(44)	0.77	WAC 173-340-720(4)(b)(iii)(A) and (B)	No	Yes
1,2-Dichloroethane	No	2/13/2008	12/17/2013	μg/L	524	0	0	0.05	1	X	5-5	0.48	WAC 173-340-720(4)(b)(iii)(A) and (B)	No	Yes
Acrolein	No	4/15/2008	12/17/2013	μg/L	123	0	0	0.52	5	-	3	4.0	WAC 173-340-720(4)(b)(iii)(A) and (B)	No	Yes
Benzene	No	2/13/2008	12/17/2013	μg/L	524	0	0	0.032	1	-	-	0.80	WAC 173-340-720(4)(b)(iii)(A) and (B)	No	Yes
Bromodichloromethane	No	4/15/2008	12/17/2013	μg/L	123	10	8.13	0.082	1	0.17	2.1	0.71	WAC 173-340-720(4)(b)(iii)(A) and (B)	No	Yes
Carbon tetrachloride	No	2/13/2008	12/17/2013	μg/L	524	15	2.86	0.042	1	0.098	7.4	0.63	WAC 173-340-720(4)(b)(iii)(A) and (B)	No	Yes
cis-1,3-Dichloropropene	No	4/15/2008	12/17/2013	μg/L	123	0	0	0.073	1	=	5	0.44	WAC 173-340-720(4)(b)(iii)(A) and (B)	No	Yes
Dibromochloromethane	No	4/15/2008	12/17/2013	μg/L	123	7	5.69	0.057	1	1.6	3.3	0.52	WAC 173-340-720(4)(b)(iii)(A) and (B)	No	Yes
Methacrylonitrile	No	4/15/2008	12/17/2013	μg/L	123	0	0	0.05	2	5-1	53	0.80	WAC 173-340-720(4)(b)(iii)(A) and (B)	No	Yes
trans-1,3-Dichloropropene	No	4/15/2008	12/17/2013	μg/L	123	0	0	0.08	1	9	5	0.44	WAC 173-340-720(4)(b)(iii)(A) and (B)	No	Yes
Trichloroethene	No	2/13/2008	12/17/2013	μg/L	523	36	6.88	0.091	1	0.25	4.2	1.0	WAC 173-340-720(4)(b)(iii)(A) and (B)	No	Yes
Vinyl chloride	No	2/13/2008	12/17/2013	μg/L	524	0	0	0.032	1			0.061	WAC 173-340-720(4)(b)(iii)(A) and (B)	No	Yes

Table 6-14. Comparison of MDLs from 200-PO-1 Groundwater OU Non-River Exposure Areas to Human Health Comparison Values (All MDLs Less Than or Equal to Comparison Value)

		First	Last										Lagranto Gompanson Value)	Is Min. Nondetect >	Is Max. Nondetect >
Analyte Name	Filtered?	Sample Date	Sample Date	Units	Number of Results	Number of Detects	Frequency of Detects (%)	Min. Nondetect	Max. Nondetect	Min. Detect	Max. Detect	Comparison Value	Comparison Value Basis	Comparison Value?	Comparison Value?
							Herbi	cides				,			
2-(2-methyl-4-chlorophenoxy) propionic acid	No	12/12/2012	12/12/2012	μg/L	1	0	0	130	130			16.0	WAC 173-340-720(4)(b)(iii)(A) and (B)	Yes	Yes
2-Methyl-4 chlorophenoxyacetic acid	No	12/12/2012	12/12/2012	μg/L	1	0	0	130	130			8.0	WAC 173-340-720(4)(b)(iii)(A) and (B)	Yes	Yes
							Organochlori	ne Pesticides							
Aldrin	No	4/15/2008	12/12/2012	μg/L	33	0	0	0.004	0.0095			0.0026	WAC 173-340-720(4)(b)(iii)(A) and (B)	Yes	Yes
Toxaphene	No	4/15/2008	12/12/2012	μg/L	33	0	0	0.19	0.59	-		0.080	WAC 173-340-720(4)(b)(iii)(A) and (B)	Yes	Yes
							Polychlorinat	ed Biphenyls							
Aroclor-1221	No	3/16/2009	12/12/2012	μg/L	4	0	0	0.2	0.21			0.022	WAC 173-340-720(4)(b)(iii)(A) and (B)	Yes	Yes
Aroclor-1232	No	3/16/2009	12/12/2012	μg/L	4	0	0	0.09	0.21			0.022	WAC 173-340-720(4)(b)(iii)(A) and (B)	Yes	Yes
Aroclor-1242	No	3/16/2009	12/12/2012	μg/L	4	0	0	0.09	0.21			0.044	WAC 173-340-720(4)(b)(iii)(A) and (B)	Yes	Yes
Aroclor-1248	No	3/16/2009	12/12/2012	μg/L	4	0	0	0.09	0.21			0.044	WAC 173-340-720(4)(b)(iii)(A) and (B)	Yes	Yes
Aroclor-1254	No	3/16/2009	12/12/2012	μg/L	4	0	0	0.09	0.14			0.044	WAC 173-340-720(4)(b)(iii)(A) and (B)	Yes	Yes
Aroclor-1260	No	3/16/2009	12/12/2012	μg/L	4	0	0	0.09	0.14			0.044	WAC 173-340-720(4)(b)(iii)(A) and (B)	Yes	Yes
							Semivolatile Orga	nic Compounds							
1,2,3-Trichloropropane	No	4/15/2008	12/17/2013	μg/L	123	0	0	0.15	1			0.0015	WAC 173-340-720(4)(b)(iii)(A) and (B)	Yes	Yes
2,4-Dinitrotoluene	No	2/21/2008	12/17/2013	μg/L	99	0	0	0.48	1			0.28	WAC 173-340-720(4)(b)(iii)(A) and (B)	Yes	Yes
2-Acetylaminofluorene	No	3/16/2009	12/17/2013	μg/L	39	0	0	0.9	1			0.023	WAC 173-340-720(4)(b)(iii)(A) and (B)	Yes	Yes
2-Naphthylamine	No	3/16/2009	12/17/2013	μg/L	39	0	0	1	2			0.049	WAC 173-340-720(4)(b)(iii)(A) and (B)	Yes	Yes
3,3'-Dichlorobenzidine	No	3/16/2009	12/17/2013	μg/L	40	0	0	0.9	1.3			0.19	WAC 173-340-720(4)(b)(iii)(A) and (B)	Yes	Yes
3,3'-Dimethylbenzidine	No	3/16/2009	12/17/2013	μg/L	39	0	0	2.6	4			0.0080	WAC 173-340-720(4)(b)(iii)(A) and (B)	Yes	Yes
3-Methylcholanthrene	No	3/16/2009	12/17/2013	μg/L	39	0	0	0.9	1			0.0040	WAC 173-340-720(4)(b)(iii)(A) and (B)	Yes	Yes
4-Aminobiphenyl	No	3/16/2009	12/17/2013	μg/L	39	0	0	1	2			0.0042	WAC 173-340-720(4)(b)(iii)(A) and (B)	Yes	Yes
4-Chloroaniline	No	3/16/2009	12/17/2013	μg/L	40	0	0	0.9	1.3			0.22	WAC 173-340-720(4)(b)(iii)(A) and (B)	Yes	Yes
7,12-Dimethylbenz[a]anthracene	No	3/16/2009	12/17/2013	μg/L	39	0	0	0.9	1			0.00035	WAC 173-340-720(4)(b)(iii)(A) and (B)	Yes	Yes
Benzo(a)anthracene	No	3/16/2009	12/17/2013	μg/L	40	0	0	0.9	1			0.12	WAC 173-340-720(4)(b)(iii)(A) and (B)	Yes	Yes
Benzo(a)pyrene	No	3/16/2009	12/17/2013	μg/L	40	0	0	0.9	1	-		0.012	WAC 173-340-720(4)(b)(iii)(A) and (B)	Yes	Yes
Benzo(b)fluoranthene	No	3/16/2009	12/17/2013	μg/L	40	0	0	0.9	1			0.12	WAC 173-340-720(4)(b)(iii)(A) and (B)	Yes	Yes
Benzo(k)fluoranthene	No	3/16/2009	12/17/2013	μg/L	40	0	0	0.9	1			0.12	WAC 173-340-720(4)(b)(iii)(A) and (B)	Yes	Yes
Bis(2-chloro-1-methylethyl)ether	No	3/16/2009	12/17/2013	μg/L	40	0	0	0.9	1.1	-		0.63	WAC 173-340-720(4)(b)(iii)(A) and (B)	Yes	Yes
Bis(2-chloroethyl) ether	No	3/16/2009	12/17/2013	μg/L	40	0	0	0.9	1			0.040	WAC 173-340-720(4)(b)(iii)(A) and (B)	Yes	Yes
Chlorobenzilate	No	3/16/2009	12/17/2013	μg/L	39	0	0	0.9	1			0.80	WAC 173-340-720(4)(b)(iii)(A) and (B)	Yes	Yes

Table 6-14. Comparison of MDLs from 200-PO-1 Groundwater OU Non-River Exposure Areas to Human Health Comparison Values (All MDLs Less Than or Equal to Comparison Value)

													1		3
Analyte Name	Filtered?	First Sample Date	Last Sample Date	Units	Number of Results	Number of Detects	Frequency of Detects (%)	Min. Nondetect	Max. Nondetect	Min. Detect	Max. Detect	Comparison Value	Comparison Value Basis	Is Min. Nondetect > Comparison Value?	Is Max. Nondetect > Comparison Value?
Dibenz[a,h]anthracene	No	3/16/2009	12/17/2013	μg/L	40	0	0	0.9	1			0.12	WAC 173-340-720(4)(b)(iii)(A) and (B)	Yes	Yes
Disulfoton	No	3/16/2009	12/17/2013	μg/L	39	0	0	0.9	1	77		0.64	WAC 173-340-720(4)(b)(iii)(A) and (B)	Yes	Yes
Hexachlorobenzene	No	3/16/2009	12/17/2013	μg/L	40	0	0	0.9	1	-		0.055	WAC 173-340-720(4)(b)(iii)(A) and (B)	Yes	Yes
Hexachlorobutadiene	No	3/16/2009	12/17/2013	μg/L	40	0	0	0.9	1		7-5	0.56	WAC 173-340-720(4)(b)(iii)(A) and (B)	Yes	Yes
Indeno(1,2,3-cd)pyrene	No	3/16/2009	12/17/2013	μg/L	40	0	0	0.9	1	-		0.12	WAC 173-340-720(4)(b)(iii)(A) and (B)	Yes	Yes
Kepone	No	3/16/2009	12/17/2013	μg/L	39	0	0	0.9	20	7-5		0.0088	WAC 173-340-720(4)(b)(iii)(A) and (B)	Yes	Yes
Methyl Methanesulfonate	No	3/16/2009	12/17/2013	μg/L	39	0	0	0.9	2			0.88	WAC 173-340-720(4)(b)(iii)(A) and (B)	Yes	Yes
Nitrosopyrrolidine	No	3/16/2009	12/17/2013	μg/L	39	0	0	0.9	1	-		0.021	WAC 173-340-720(4)(b)(iii)(A) and (B)	Yes	Yes
n-Nitrosodiethylamine	No	3/16/2009	12/17/2013	μg/L	39	0	0	0.9	1.2			0.00029	WAC 173-340-720(4)(b)(iii)(A) and (B)	Yes	Yes
n-Nitrosodimethylamine	No	3/16/2009	12/17/2013	μg/L	40	0	0	0.9	2			0.00086	WAC 173-340-720(4)(b)(iii)(A) and (B)	Yes	Yes
n-Nitrosodi-n-butylamine	No	3/16/2009	12/17/2013	μg/L	39	0	0	0.9	1.2			0.0081	WAC 173-340-720(4)(b)(iii)(A) and (B)	Yes	Yes
n-Nitrosodi-n-dipropylamine	No	2/21/2008	12/17/2013	μg/L	99	1	1.01	0.5	1	2.9	2.9	0.013	WAC 173-340-720(4)(b)(iii)(A) and (B)	Yes	Yes
n-Nitrosomethylethylamine	No	3/16/2009	12/17/2013	μg/L	39	0	0	0.9	1.1			0.0040	WAC 173-340-720(4)(b)(iii)(A) and (B)	Yes	Yes
n-Nitrosomorpholine	No	3/16/2009	12/17/2013	μg/L	39	0	0	0.9	1.2			0.013	WAC 173-340-720(4)(b)(iii)(A) and (B)	Yes	Yes
n-Nitrosopiperidine	No	3/16/2009	12/17/2013	μg/L	39	0	0	0.9	1			0.0093	WAC 173-340-720(4)(b)(iii)(A) and (B)	Yes	Yes
Azobenzene	No	6/10/2010	12/20/2010	μg/L	33	0	0	1	1			0.40	WAC 173-340-720(4)(b)(iii)(A) and (B)	Yes	Yes
p-Dimethylaminoazobenzene	No	3/16/2009	12/17/2013	μg/L	39	0	0	0.9	1			0.019	WAC 173-340-720(4)(b)(iii)(A) and (B)	Yes	Yes
Pentachloroethane	No	3/16/2009	12/17/2013	μg/L	39	0	0	0.9	2.4			0.49	WAC 173-340-720(4)(b)(iii)(A) and (B)	Yes	Yes
Pentachloronitrobenzene (PCNB)	No	3/16/2009	12/17/2013	μg/L	39	0	0	1	2			0.34	WAC 173-340-720(4)(b)(iii)(A) and (B)	Yes	Yes
Pentachlorophenol	No	1/25/2008	12/17/2013	μg/L	286	0	0	0.5	2.4			0.22	WAC 173-340-720(4)(b)(iii)(A) and (B)	Yes	Yes
			1				Miscellaneou	s Organics	T.		t .			1.	
Oil and Grease	No	3/16/2009	3/17/2009	μg/L	3	0	0	2,100	2,100			500	WAC 173-340-900 Tables, Table 720-1	Yes	Yes
							Volatile Organi	c Compounds		'	•				
1,2-Dibromo-3-chloropropane	No	4/15/2008	12/17/2013	μg/L	123	0	0	0.2	1			0.055	WAC 173-340-720(4)(b)(iii)(A) and (B)	Yes	Yes
1,2-Dibromoethane	No	4/15/2008	12/17/2013	μg/L	123	0	0	0.098	1			0.022	WAC 173-340-720(4)(b)(iii)(A) and (B)	Yes	Yes
1,4-Dioxane	No	2/25/2008	12/17/2013	μg/L	333	0	0	0.67	12			0.44	WAC 173-340-720(4)(b)(iii)(A) and (B)	Yes	Yes
Acrylonitrile	No	3/16/2009	12/17/2013	μg/L	8	0	0	1	5			0.081	WAC 173-340-720(4)(b)(iii)(A) and (B)	Yes	Yes
-													1		

Table 6-15. Comparison of MDLs from 200-PO-1 Groundwater OU Near River Exposure Area to Human Health and Aquatic Comparison Values (All MDLs Less Than or Equal to Comparison Value)

Analyte Name	Filtered?	First Sample Date	Last Sample Date	Units	Number of Results	Number of Detects	Frequency of Detects (%)	Min. Nondetect	Max. Nondetect	Min. Detect	Max. Detect	Comparison Value	Comparison Value Basis	Is Min. Nondetect > Comparison Value?	Is Max. Nondetect > Comparison Value?
							Anions/C	Cations							
Chloride	No	2/15/2008	1/6/2014	μg/L	59	58	98.31	86	86	1,080	19,100	250,000	40 CFR 141, federal MCL	No	No
Cyanide	No	2/15/2008	1/6/2014	μg/L	59	56	94.92	50	60	47	430	4.8	WAC 173-340-720(4)(b)(iii)(A) and (B)	No	No
Fluoride	No	2/15/2008	1/6/2014	μg/L	59	57	96.61	274	274	227	36,100	960	WAC 173-340-720(4)(b)(iii)(A) and (B)	No	No
Nitrate	No	2/15/2008	1/6/2014	μg/L	59	12	20.34	9.85	131	131	460	45,000	40 CFR 141, federal MCL	No	No
Nitrite	No	2/15/2008	1/6/2014	μg/L	59	58	98.31	86	86	1,080	19,100	3,300	40 CFR 141, federal MCL	No	No
							Meta	als							
Aluminum	No	6/10/2010	1/6/2014	μg/L	8	4	50	20	20	14.6	113	87	Clean Water Act, freshwater CCC	No	No
Aluminum	Yes	6/10/2010	1/6/2014	μg/L	8	2	25	10	20	39.3	50.8	87	Clean Water Act, freshwater CCC	No	No
Arsenic	Yes	11/3/2008	1/6/2014	μg/L	14	14	100	0	0	1.72	7.04	7.9	DOE/RL-96-61, Table ES-1	No	No
Barium	No	2/15/2008	1/6/2014	μg/L	49	48	97.96	4	4	11.3	194	2,000	40 CFR 141, federal MCL	No	No
Barium	Yes	2/15/2008	1/6/2014	μg/L	36	35	97.22	4	4	9.9	72	2,000	40 CFR 141, federal MCL	No	No
Beryllium	No	2/15/2008	1/6/2014	μg/L	48	0	0	0.1	4			4.0	40 CFR 141, federal MCL	No	No
Beryllium	Yes	2/15/2008	1/6/2014	μg/L	36	0	0	0.1	4			4.0	40 CFR 141, federal MCL	No	No
Boron	No	6/10/2010	1/6/2014	μg/L	8	6	75	19	41	7.17	25	3,200	WAC 173-340-720(4)(b)(iii)(A) and (B)	No	No
Boron	Yes	8/2/2010	1/6/2014	μg/L	7	5	71.43	41	41	14.1	26.1	3,200	WAC 173-340-720(4)(b)(iii)(A) and (B)	No	No
Chromium	No	2/15/2008	1/6/2014	μg/L	49	11	22.45	0.2	14	2.16	15.5	65	Clean Water Act, freshwater CCC	No	No
Chromium	Yes	2/15/2008	1/6/2014	μg/L	36	10	27.78	1	14	0.404	15	65	Clean Water Act, freshwater CCC	No	No
Copper	No	2/15/2008	1/6/2014	μg/L	49	8	16.33	0.2	6	0.214	17.2	9.0	Clean Water Act, freshwater CCC	No	No
Copper	Yes	2/15/2008	1/6/2014	μg/L	36	6	16.67	0.2	6	0.196	6.1	9.0	Clean Water Act, freshwater CCC	No	No
Hexavalent chromium	No	12/31/2013	1/6/2014	μg/L	5	2	40	2	2	2.2	5.4	10	40 CFR 131, freshwater CCC	No	No
Hexavalent chromium	Yes	12/31/2013	1/6/2014	μg/L	5	3	60	2	2	2.4	5.6	10	40 CFR 131, freshwater CCC	No	No
Iron	No	2/15/2008	1/6/2014	μg/L	48	44	91.67	18	38	20.9	20,700	1,000	Clean Water Act, freshwater CCC	No	No
Iron	Yes	2/15/2008	1/6/2014	μg/L	33	15	45.45	9	40	14.7	230	1,000	Clean Water Act, freshwater CCC	No	No
Lead	No	11/3/2008	1/6/2014	μg/L	14	7	50	0.1	0.2	0.1	2.11	2.1	WAC 173-201A	No	No
Lead	Yes	11/3/2008	1/6/2014	μg/L	14	2	14.29	0.05	0.2	0.125	0.126	2.1	WAC 173-201A	No	No
Lithium	No	6/10/2010	12/7/2010	μg/L	3	3	100	0	0	12	21	32	WAC 173-340-720(4)(b)(iii)(A) and (B)	No	No
Lithium	Yes	5/7/2008	12/7/2010	μg/L	3	3	100			12.3	15	32	WAC 173-340-720(4)(b)(iii)(A) and (B)	No	No
Manganese	No	2/15/2008	1/6/2014	μg/L	49	23	46.94	4	6	1.31	813	384	WAC 173-340-720(4)(b)(iii)(A) and (B)	No	No
Manganese	Yes	2/15/2008	1/6/2014	μg/L	35	14	40	4	6	0.41	43	384	WAC 173-340-720(4)(b)(iii)(A) and (B)	No	No
Molybdenum	No	6/10/2010	1/6/2014	μg/L	8	8	100			2.41	11.6	80	WAC 173-340-720(4)(b)(iii)(A) and (B)	No	No

Table 6-15. Comparison of MDLs from 200-PO-1 Groundwater OU Near River Exposure Area to Human Health and Aquatic Comparison Values (All MDLs Less Than or Equal to Comparison Value)

Analyte Name	Filtered?	First Sample Date	Last Sample Date	Units	Number of Results	Number of Detects	Frequency of Detects (%)	Min. Nondetect	Max. Nondetect	Min. Detect	Max. Detect	Comparison Value	Comparison Value Basis	Is Min. Nondetect > Comparison Value?	Is Max. Nondetect > Comparison Value?
Molybdenum	Yes	6/10/2010	1/6/2014	μg/L	8	8	100			2.68	11.7	80	WAC 173-340-720(4)(b)(iii)(A) and (B)	No	No
Nickel	Yes	2/15/2008	1/6/2014	μg/L	35	4	11.43	0.2	6	0.33	0.56	52.	Clean Water Act, freshwater CCC	No	No
Selenium	No	6/10/2010	1/6/2014	μg/L	8	1	12.5	0.6	2	2.19	2.19	5.0	Clean Water Act, freshwater CCC	No	No
Selenium	Yes	6/10/2010	1/6/2014	μg/L	8	1	12.5	0.6	2	1.5	1.5	5.0	Clean Water Act, freshwater CCC	No	No
Strontium	No	2/15/2008	1/6/2014	μg/L	48	47	97.92	4	4	55.7	734	9,600	WAC 173-340-720(4)(b)(iii)(A) and (B)	No	No
Strontium	Yes	2/15/2008	1/6/2014	μg/L	35	34	97.14	4	4	66.8	734	9,600	WAC 173-340-720(4)(b)(iii)(A) and (B)	No	No
Thallium	No	11/3/2008	1/6/2014	μg/L	14	1	7.14	0.05	0.1	0.37	0.37	0.50	40 CFR 141, federal MCLG	No	No
Thallium	Yes	11/3/2008	1/6/2014	μg/L	14	1	7.14	0.05	0.1	0.14	0.14	0.50	40 CFR 141, federal MCLG	No	No
Tin	No	6/10/2010	1/6/2014	μg/L	8	1	12.5	0.1	0.1	0.12	0.12	9,600	WAC 173-340-720(4)(b)(iii)(A) and (B)	No	No
Tin	Yes	6/10/2010	1/6/2014	μg/L	8	1	12.5	0.05	0.1	0.13	0.13	9,600	WAC 173-340-720(4)(b)(iii)(A) and (B)	No	No
Uranium	No	11/3/2008	1/6/2014	μg/L	15	15	100			0.10	6.89	30	40 CFR 141, federal MCL	No	No
Uranium	Yes	12/31/2013	1/6/2014	μg/L	5	5	100			0.16	4.62	30	40 CFR 141, federal MCL	No	No
Vanadium	No	2/15/2008	1/6/2014	μg/L	49	29	59.18	4.1	17	0.63	26.9	80	WAC 173-340-720(4)(b)(iii)(A) and (B)	No	No
Vanadium	Yes	2/15/2008	1/6/2014	μg/L	35	24	68.57	10	17	0.75	21.2	80	WAC 173-340-720(4)(b)(iii)(A) and (B)	No	No
Zinc	No	2/15/2008	1/6/2014	μg/L	49	11	22.45	4	9	4.23	145	91	WAC 173-201A	No	No
Zinc	Yes	2/15/2008	1/6/2014	μg/L	35	6	17.14	2	9	4.6	10	91	WAC 173-201A	No	No
			1				Organochlorin	ne Pesticides		l					
4,4'-DDD (Dichlorodiphenyldichloroethane)	No	11/3/2008	12/31/2013	μg/L	8	0	0	0.0038	0.0096			0.36	WAC 173-340-720(4)(b)(iii)(A) and (B)	No	No
4,4'-DDE (Dichlorodiphenyldichloroethylene)	No	11/3/2008	12/31/2013	μg/L	8	0	0	0.0027	0.013			0.26	WAC 173-340-720(4)(b)(iii)(A) and (B)	No	No
Alpha-BHC	No	11/3/2008	12/31/2013	μg/L	8	0	0	0.0025	0.0096		-	0.014	WAC 173-340-720(4)(b)(iii)(A) and (B)	No	No
Alpha-chlordane	No	12/31/2013	12/31/2013	μg/L	2	0	0	0.014	0.014			0.25	WAC 173-340-720(4)(b)(iii)(A) and (B)	No	No
beta-1,2,3,4,5,6-Hexachlorocyclohexane (beta-BHC)	No	11/3/2008	12/31/2013	μg/L	8	0	0	0.012	0.013			0.049	WAC 173-340-720(4)(b)(iii)(A) and (B)	No	No
Endosulfan I	No	11/3/2008	12/31/2013	μg/L	8	0	0	0.0025	0.018			0.056	Clean Water Act, freshwater CCC	No	No
Endosulfan II	No	11/3/2008	12/31/2013	μg/L	8	0	0	0.0095	0.01			0.056	Clean Water Act. freshwater CCC	No	No
Gamma-BHC (Lindane)	No	11/3/2008	12/31/2013	μg/L	8	0	0	0.0025	0.0096			0.080	WAC 173-340-720(4)(b)(iii)(A) and (B)	No	No
Methoxychlor	No	11/3/2008	12/31/2013	μg/L	8	0	0	0.005	0.012			0.030	Clean Water Act, freshwater CCC	No	No
trans-Chlordane	No	12/31/2013	12/31/2013	μg/L	2	0	0	0.0095	0.0096			0.25	WAC 173-340-720(4)(b)(iii)(A) and (B)	No	No
	<u></u>	<u> </u>			,		Radionu	clides	,		•	•		·	
Cesium-137	No	2/15/2008	1/6/2014	pCi/L	41	0	0	-4.6	1.91			200	40 CFR 141, federal MCL	No	No
Cobalt-60	No	2/15/2008	1/6/2014	pCi/L	41	0	0	-1.24	6.8		-	100	40 CFR 141, federal MCL	No	No
Europium-152	No	2/15/2008	1/6/2014	pCi/L	41	0	0	-27	9.2		188	200	40 CFR 141, federal MCL	No	No

Table 6-15. Comparison of MDLs from 200-PO-1 Groundwater OU Near River Exposure Area to Human Health and Aquatic Comparison Values (All MDLs Less Than or Equal to Comparison Value)

									14.14.6.0.0						
Analyte Name	Filtered?	First Sample Date	Last Sample Date	Units	Number of Results	Number of Detects	Frequency of Detects (%)	Min. Nondetect	Max. Nondetect	Min. Detect	Max. Detect	Comparison Value	Comparison Value Basis	Is Min. Nondetect > Comparison Value?	Is Max. Nondetect > Comparison Value?
Europium-154	No	2/15/2008	1/6/2014	pCi/L	41	0	0	-10	10			60.0	40 CFR 141, federal MCL	No	No
Europium-155	No	2/15/2008	1/6/2014	pCi/L	41	0	0	-35	19			600	40 CFR 141, federal MCL	No	No
Gross alpha	No	2/15/2008	1/6/2014	pCi/L	47	13	27.66	-0.59	2.6	2.29	3.5	15	40 CFR 141, federal MCL	No	No
Gross beta	No	2/15/2008	1/6/2014	pCi/L	47	44	93.62	0.94	1.3	4.2	71	4.0 mrem/yr	40 CFR 141, federal MCL		
Iodine-129	No	2/15/2008	1/6/2014	pCi/L	40	15	37.5	-0.894	0.616	0.17	0.56	1.0	40 CFR 141, federal MCL	No	No
Neptunium-237	No	11/3/2008	1/6/2014	pCi/L	9	0	0	-0.025	0.17	-		15	40 CFR 141, federal MCL	No	No
Selenium-79	No	11/3/2008	1/6/2014	pCi/L	9	3	33.33	-7.99	-1.58	31	39.4	7.3	EPA Method 2013	No	No
Strontium-90	No	2/15/2008	1/6/2014	pCi/L	48	6	12.5	-11	1.1	2.3	4.7	8.0	40 CFR 141, federal MCL	No	No
Technetium-99	No	11/3/2008	12/31/2013	pCi/L	9	6	66.67	-1.1	-0.17	13	110	900	40 CFR 141, federal MCL	No	No
Tritium	No	2/15/2008	1/6/2014	pCi/L	59	50	84.75	-200	1,700	290	66,000	20,000	40 CFR 141, federal MCL	No	No
		1					Semivolatile Orga	nic Compounds							
1,2,4,5-Tetrachlorobenzene	No	6/10/2010	1/6/2014	μg/L	6	0	0	0.9	1			4.8	WAC 173-340-720(4)(b)(iii)(A) and (B)	No	No
1,2,4-Trichlorobenzene	No	6/10/2010	1/6/2014	μg/L	6	0	0	0.9	1			1.5	WAC 173-340-720(4)(b)(iii)(A) and (B)	No	No
1,2-Dichlorobenzene	No	6/10/2010	1/6/2014	μg/L	6	0	0	0.9	1) -'		600	40 CFR 141, federal MCL	No	No
2,3,4,6-Tetrachlorophenol	No	6/10/2010	1/6/2014	μg/L	6	0	0	0.9	1			480	WAC 173-340-720(4)(b)(iii)(A) and (B)	No	No
2,4,5-Trichlorophenol	No	6/10/2010	1/6/2014	μg/L	6	0	0	0.9	1			800	WAC 173-340-720(4)(b)(iii)(A) and (B)	No	No
2,4,6-Trichlorophenol	No	6/10/2010	1/6/2014	μg/L	6	0	0	0.9	1			4.0	WAC 173-340-720(4)(b)(iii)(A) and (B)	No	No
2,4-Dichlorophenol	No	11/3/2008	1/6/2014	μg/L	12	0	0	0.9	1	-		24	WAC 173-340-720(4)(b)(iii)(A) and (B)	No	No
2,4-Dimethylphenol	No	6/10/2010	1/6/2014	μg/L	6	0	0	1	1			160	WAC 173-340-720(4)(b)(iii)(A) and (B)	No	No
2,4-Dinitrophenol	No	11/3/2008	1/6/2014	μg/L	12	0	0	0.9	2	-	1	32	WAC 173-340-720(4)(b)(iii)(A) and (B)	No	No
2,6-Dinitrotoluene	No	6/10/2010	1/6/2014	μg/L	6	0	0	0.9	2.2) 	3	16	WAC 173-340-720(4)(b)(iii)(A) and (B)	No	No
2-Chloronaphthalene	No	6/10/2010	1/6/2014	μg/L	6	0	0	0.9	1	-		640	WAC 173-340-720(4)(b)(iii)(A) and (B)	No	No
2-Chlorophenol	No	6/10/2010	1/6/2014	μg/L	6	0	0	0.9	1			40	WAC 173-340-720(4)(b)(iii)(A) and (B)	No	No
2-Hexanone	No	11/3/2008	1/6/2014	μg/L	14	0	0	0.08	5	-		40	WAC 173-340-720(4)(b)(iii)(A) and (B)	No	No
2-Methylnaphthalene	No	6/10/2010	1/6/2014	μg/L	6	0	0	0.9	1			32.0	WAC 173-340-720(4)(b)(iii)(A) and (B)	No	No
2-Methylphenol (cresol, o-)	No	11/3/2008	1/6/2014	μg/L	12	0	0	0.9	2	-		400	WAC 173-340-720(4)(b)(iii)(A) and (B)	No	No
2-Nitroaniline	No	6/10/2010	1/6/2014	μg/L	6	0	0	0.9	1	:	3	160	WAC 173-340-720(4)(b)(iii)(A) and (B)	No	No
3-Nitroaniline	No	6/10/2010	1/6/2014	μg/L	6	0	0	0.9	1			4.2	WAC 173-340-720(4)(b)(iii)(A) and (B)	No	No
4,6-Dinitro-2-methylphenol	No	6/10/2010	1/6/2014	μg/L	6	0	0	0.9	1) (33	1.3	WAC 173-340-720(4)(b)(iii)(A) and (B)	No	No
4-Chloro-3-methylphenol	No	6/10/2010	1/6/2014	μg/L	6	0	0	0.9	1	72		1,600	WAC 173-340-720(4)(b)(iii)(A) and (B)	No	No
4-Methylphenol (cresol, p-)	No	6/10/2010	12/7/2010	μg/L	3	0	0	10	10			800	WAC 173-340-720(4)(b)(iii)(A) and (B)	No	No

Table 6-15. Comparison of MDLs from 200-PO-1 Groundwater OU Near River Exposure Area to Human Health and Aquatic Comparison Values (All MDLs Less Than or Equal to Comparison Value)

Analyte Name	Filtered?	First Sample Date	Last Sample Date	Units	Number of Results	Number of Detects	Frequency of Detects (%)	Min. Nondetect	Max. Nondetect	Min. Detect	Max. Detect	Comparison Value	Comparison Value Basis	Is Min. Nondetect > Comparison Value?	Is Max. Nondetect > Comparison Value?
4-Nitroaniline	No	6/10/2010	1/6/2014	μg/L	6	0	0	0.9	1	7		4.4	WAC 173-340-720(4)(b)(iii)(A) and (B)	No	No
5-Nitro-o-toluidine	No	6/10/2010	1/6/2014	μg/L	6	0	0	0.9	1			9.7	WAC 173-340-720(4)(b)(iii)(A) and (B)	No	No
Acenaphthene	No	6/10/2010	1/6/2014	μg/L	6	0	0	0.9	1			480	WAC 173-340-720(4)(b)(iii)(A) and (B)	No	No
Acetophenone	No	6/10/2010	1/6/2014	μg/L	6	0	0	0.9	1			800	WAC 173-340-720(4)(b)(iii)(A) and (B)	No	No
Aniline	No	6/10/2010	1/6/2014	μg/L	6	0	0	0.9	1			7.7	WAC 173-340-720(4)(b)(iii)(A) and (B)	No	No
Anthracene	No	6/10/2010	1/6/2014	μg/L	6	0	0	0.9	1			2,400	WAC 173-340-720(4)(b)(iii)(A) and (B)	No	No
Benzyl alcohol	No	6/10/2010	1/6/2014	μg/L	6	0	0	0.9	1			800	WAC 173-340-720(4)(b)(iii)(A) and (B)	No	No
Bis(2-Chloroethoxy)methane	No	6/10/2010	1/6/2014	μg/L	6	0	0	0.9	1			48.0	WAC 173-340-720(4)(b)(iii)(A) and (B)	No	No
Bis(2-ethylhexyl) phthalate	No	11/3/2008	1/6/2014	μg/L	12	0	0	0.9	1	-		6.0	40 CFR 141, federal MCL	No	No
Butylbenzylphthalate	No	6/10/2010	1/6/2014	μg/L	6	0	0	0.9	1		1	46	WAC 173-340-720(4)(b)(iii)(A) and (B)	No	No
Carbazole	No	6/10/2010	1/6/2014	μg/L	6	0	0	0.9	1			4.4	WAC 173-340-720(4)(b)(iii)(A) and (B)	No	No
Chrysene	No	6/10/2010	1/6/2014	μg/L	6	0	0	0.9	1	7		1.2	WAC 173-340-720(4)(b)(iii)(A) and (B)	No	No
Dibenzofuran	No	6/10/2010	1/6/2014	μg/L	6	0	0	0.9	1			8.0	WAC 173-340-720(4)(b)(iii)(A) and (B)	No	No
Diethylphthalate	No	6/10/2010	1/6/2014	μg/L	6	0	0	0.9	1			12,800	WAC 173-340-720(4)(b)(iii)(A) and (B)	No	No
Dimethoate	No	11/3/2008	1/6/2014	μg/L	12	0	0	0.9	1.1			3.2	WAC 173-340-720(4)(b)(iii)(A) and (B)	No	No
Di-n-butylphthalate	No	6/10/2010	1/6/2014	μg/L	6	0	0	0.9	1			1,600	WAC 173-340-720(4)(b)(iii)(A) and (B)	No	No
Dinoseb(2-secButyl-4,6-dinitrophenol)	No	6/10/2010	1/6/2014	μg/L	6	0	0	0.9	2			7.0	40 CFR 141, federal MCL	No	No
Fluoranthene	No	6/10/2010	1/6/2014	μg/L	6	0	0	0.9	1			640	WAC 173-340-720(4)(b)(iii)(A) and (B)	No	No
Fluorene	No	6/10/2010	1/6/2014	μg/L	6	0	0	0.9	1			320	WAC 173-340-720(4)(b)(iii)(A) and (B)	No	No
Isophorone	No	6/10/2010	1/6/2014	μg/L	6	0	0	0.9	1			46	WAC 173-340-720(4)(b)(iii)(A) and (B)	No	No
Hexachlorocyclopentadiene	No	6/10/2010	1/6/2014	μg/L	6	0	0	0.9	1			48	WAC 173-340-720(4)(b)(iii)(A) and (B)	No	No
Hexachloroethane	No	6/10/2010	1/6/2014	μg/L	6	0	0	0.9	1			1.1	WAC 173-340-720(4)(b)(iii)(A) and (B)	No	No
m-Dinitrobenzene	No	6/10/2010	1/6/2014	μg/L	6	0	0	0.9	1			1.6	WAC 173-340-720(4)(b)(iii)(A) and (B)	No	No
Methyl parathion	No	6/10/2010	1/6/2014	μg/L	6	0	0	0.9	1			4.0	WAC 173-340-720(4)(b)(iii)(A) and (B)	No	No
Naphthalene	No	11/3/2008	1/6/2014	μg/L	12	0	0	0.9	1			160	WAC 173-340-720(4)(b)(iii)(A) and (B)	No	No
Nitrobenzene	No	11/3/2008	1/6/2014	μg/L	12	0	0	0.9	1			16	WAC 173-340-720(4)(b)(iii)(A) and (B)	No	No
n-Nitrosodiphenylamine	No	6/10/2010	12/7/2010	μg/L	3	0	0	1	1			18	WAC 173-340-720(4)(b)(iii)(A) and (B)	No	No
Pentachlorobenzene	No	6/10/2010	1/6/2014	μg/L	6	0	0	0.9	1			13	WAC 173-340-720(4)(b)(iii)(A) and (B)	No	No
Phenacetin	No	6/10/2010	1/6/2014	μg/L	6	0	0	0.9	1			40	WAC 173-340-720(4)(b)(iii)(A) and (B)	No	No
Phenol	No	11/3/2008	1/6/2014	μg/L	12	0	0	0.9	4			2,400	WAC 173-340-720(4)(b)(iii)(A) and (B)	No	No
Phorate	No	6/10/2010	1/6/2014	μg/L	6	0	0	0.9	1			3.2	WAC 173-340-720(4)(b)(iii)(A) and (B)	No	No

Table 6-15. Comparison of MDLs from 200-PO-1 Groundwater OU Near River Exposure Area to Human Health and Aquatic Comparison Values (All MDLs Less Than or Equal to Comparison Value)

Analyte Name	Filtered?	First Sample Date	Last Sample Date	Units	Number of Results	Number of Detects	Frequency of Detects (%)	Min. Nondetect	Max. Nondetect	Min. Detect	Max. Detect	Comparison Value	Comparison Value Basis	Is Min. Nondetect > Comparison Value?	Is Max. Nondetect > Comparison Value?
p-Phenylenediamine	No	6/10/2010	1/6/2014	μg/L	6	0	0	0.9	1			3,040	WAC 173-340-720(4)(b)(iii)(A) and (B)	No	No
Pronamide	No	6/10/2010	1/6/2014	μg/L	6	0	0	0.9	1			1,200	WAC 173-340-720(4)(b)(iii)(A) and (B)	No	No
Pyrene	No	6/10/2010	1/6/2014	μg/L	6	0	0	0.9	1			240	WAC 173-340-720(4)(b)(iii)(A) and (B)	No	No
Pyridine	No	6/10/2010	1/6/2014	μg/L	6	0	0	0.9	2	-		8.0	WAC 173-340-720(4)(b)(iii)(A) and (B)	No	No
sym-Trinitrobenzene	No	6/10/2010	1/6/2014	μg/L	6	0	0	0.9	1			480	WAC 173-340-720(4)(b)(iii)(A) and (B)	No	No
Tetraethyl dithiopyrophosphate (Sulfotepp)	No	6/10/2010	1/6/2014	μg/L	6	0	0	0.9	1			8.0	WAC 173-340-720(4)(b)(iii)(A) and (B)	No	No
Tributyl phosphate	No	11/3/2008	1/6/2014	μg/L	12	0	0	0.9	1.5			9.7	WAC 173-340-720(4)(b)(iii)(A) and (B)	No	No
Tris-2-chloroethyl phosphate	No	11/3/2008	11/14/2008	μg/L	6	0	0	1	1			4.4	WAC 173-340-720(4)(b)(iii)(A) and (B)	No	No
							Volatile Organi	c Compounds							
1,1,1,2-Tetrachloroethane	No	11/3/2008	1/6/2014	μg/L	14	0	0	0.09	0.5	j	-	1.7	WAC 173-340-720(4)(b)(iii)(A) and (B)	No	No
1,1,1-Trichloroethane	No	2/15/2008	1/6/2014	μg/L	47	0	0	0.067	1			200	40 CFR 141, federal MCL	No	No
1,1-Dichloroethane	No	2/15/2008	1/6/2014	μg/L	47	0	0	0.068	1	7		7.7	WAC 173-340-720(4)(b)(iii)(A) and (B)	No	No
1,1-Dichloroethene	No	2/15/2008	1/6/2014	μg/L	47	0	0	0.051	1			7.0	40 CFR 141, federal MCL	No	No
1,2-Dichloroethene (total)	No	11/3/2008	1/6/2014	μg/L	14	0	0	0.14	1			72	WAC 173-340-720(4)(b)(iii)(A) and (B)	No	No
1,2-Dichloropropane	No	11/3/2008	1/6/2014	μg/L	14	0	0	0.077	1			1.2	WAC 173-340-720(4)(b)(iii)(A) and (B)	No	No
1,4-Dichlorobenzene	No	2/15/2008	1/6/2014	μg/L	47	0	0	0.1	1			8.1	WAC 173-340-720(4)(b)(iii)(A) and (B)	No	No
1-Butanol	No	2/15/2008	1/6/2014	μg/L	47	0	0	12	100			800	WAC 173-340-720(4)(b)(iii)(A) and (B)	No	No
2-Butanone	No	2/15/2008	1/6/2014	μg/L	47	0	0	0.52	1			4,800	WAC 173-340-720(4)(b)(iii)(A) and (B)	No	No
4-Methyl-2-pentanone	No	2/15/2008	1/6/2014	μg/L	47	0	0	0.12	1			640	WAC 173-340-720(4)(b)(iii)(A) and (B)	No	No
Acetone	No	2/15/2008	1/6/2014	μg/L	46	1	2.17	0.34	5	2.5	2.5	7,200	WAC 173-340-720(4)(b)(iii)(A) and (B)	No	No
Allyl chloride	No	11/3/2008	1/6/2014	μg/L	14	0	0	0.11	1			2.1	WAC 173-340-720(4)(b)(iii)(A) and (B)	No	No
Bromoform	No	11/3/2008	1/6/2014	μg/L	14	0	0	0.17	1			5.5	WAC 173-340-720(4)(b)(iii)(A) and (B)	No	No
Bromomethane	No	11/3/2008	1/6/2014	μg/L	14	0	0	0.13	2			11.0	WAC 173-340-720(4)(b)(iii)(A) and (B)	No	No
Carbon disulfide	No	2/15/2008	1/6/2014	μg/L	47	0	0	0.029	1			800	WAC 173-340-720(4)(b)(iii)(A) and (B)	No	No
Chlorobenzene	No	2/15/2008	1/6/2014	μg/L	45	0	0	0.15	1			100	40 CFR 141, federal MCL	No	No
Chloroform	No	2/15/2008	1/6/2014	μg/L	47	0	0	0.08	1			1.4	WAC 173-340-720(4)(b)(iii)(A) and (B)	No	No
Chloroprene	No	11/3/2008	1/6/2014	μg/L	14	0	0	0.085	1			160	WAC 173-340-720(4)(b)(iii)(A) and (B)	No	No
cis-1,2-Dichloroethylene	No	2/15/2008	1/6/2014	μg/L	47	0	0	0.083	1			16	WAC 173-340-720(4)(b)(iii)(A) and (B)	No	No
Dibromomethane	No	11/3/2008	1/6/2014	μg/L	14	0	0	0.14	1			80	WAC 173-340-720(4)(b)(iii)(A) and (B)	No	No
Dichlorodifluoromethane	No	11/3/2008	1/6/2014	μg/L	14	0	0	0.074	2			1,600	WAC 173-340-720(4)(b)(iii)(A) and (B)	No	No
Ethyl methacrylate	No	11/3/2008	1/6/2014	μg/L	14	0	0	0.11	1			720	WAC 173-340-720(4)(b)(iii)(A) and (B)	No	No

Table 6-15. Comparison of MDLs from 200-PO-1 Groundwater OU Near River Exposure Area to Human Health and Aquatic Comparison Values (All MDLs Less Than or Equal to Comparison Value)

Analyte Name	Filtered?	First Sample Date	Last Sample Date	Units	Number of Results	Number of Detects	Frequency of Detects (%)	Min. Nondetect	Max. Nondetect	Min. Detect	Max. Detect	Comparison Value	Comparison Value Basis	Is Min. Nondetect > Comparison Value?	Is Max. Nondetect > Comparison Value?
Ethylbenzene	No	2/15/2008	1/6/2014	μg/L	47	0	0	0.061	1			4.0	WAC 173-340-720(4)(b)(iii)(A) and (B)	No	No
Hexane	No	11/3/2008	11/14/2008	μg/L	6	0	0	0.16	0.16			480	WAC 173-340-720(4)(b)(iii)(A) and (B)	No	No
Isobutyl alcohol	No	11/3/2008	1/6/2014	μg/L	14	0	0	5	8.7			2,400	WAC 173-340-720(4)(b)(iii)(A) and (B)	No	No
Methyl methacrylate	No	11/3/2008	1/6/2014	μg/L	14	0	0	0.26	2			11,200	WAC 173-340-720(4)(b)(iii)(A) and (B)	No	No
Methylene chloride	No	2/15/2008	1/6/2014	μg/L	47	0	0	0.091	1	3	1	5.0	40 CFR 141, federal MCL	No	No
Styrene	No	11/3/2008	1/6/2014	μg/L	14	0	0	0.074	1			1,600	WAC 173-340-720(4)(b)(iii)(A) and (B)	No	No
Tetrachloroethene	No	2/15/2008	1/6/2014	μg/L	47	0	0	0.088	1			5.0	40 CFR 141, federal MCL	No	No
Tetrahydrofuran	No	2/15/2008	1/6/2014	μg/L	47	0	0	1.1	3.2) 	14,400	WAC 173-340-720(4)(b)(iii)(A) and (B)	No	No
Toluene	No	2/15/2008	1/6/2014	μg/L	47	0	0	0.029	1			640	WAC 173-340-720(4)(b)(iii)(A) and (B)	No	No
trans-1,2-Dichloroethylene	No	2/15/2008	1/6/2014	μg/L	47	0	0	0.083	1	1) 	100	40 CFR 141, federal MCL	No	No
Trichloromonofluoromethane	No	11/3/2008	1/6/2014	μg/L	14	0	0	0.1	1		-	2,400	WAC 173-340-720(4)(b)(iii)(A) and (B)	No	No
Vinyl acetate	No	11/3/2008	1/6/2014	μg/L	14	0	0	0.18	2			8,000	WAC 173-340-720(4)(b)(iii)(A) and (B)	No	No
Xylenes (total)	No	2/15/2008	1/6/2014	μg/L	47	0	0	0.11	1.6			1,600	WAC 173-340-720(4)(b)(iii)(A) and (B)	No	No

Table 6-16. Comparison of MDLs from 200-PO-1 Groundwater OU Near River Exposure Area to Human Health and Aquatic Comparison Values (Some MDLs Less Than or Equal to Comparison Value)

Analyte Name	Filtered?	First Sample Date	Last Sample Date	Units	Number of Results	Number of Detects	Frequency of Detects (%)	Min. Nondetect	Max. Nondetect	Min. Detect	Max. Detect	Comparison Value	Comparison Value Basis	Is Min. Nondetect > Comparison Value?	Is Max. Nondetect > Comparison Value?
		1	_				Meta	als			•	1			
Antimony (all results)	No	2/15/2008	1/6/2014	μg/L	49	1	2.04	0.6	60	5.8	5.8	6.0	40 CFR 141, federal MCL	No	Yes
Antimony (all results)	Yes	2/15/2008	1/6/2014	μg/L	36	0	0	0.3	60			6.0	40 CFR 141, federal MCL	No	Yes
Antimony (Method 6010 results)	No	2/15/2008	12/9/2013	μg/L	41	1	2.43902439	20	60	5.8	5.8	6.0	40 CFR 141, federal MCL	Yes	Yes
Antimony (Method 6010 results)	Yes	2/15/2008	4/28/2011	μg/L	28	0	0	32	60			6.0	40 CFR 141, federal MCL	Yes	Yes
Antimony (Method 200.8 results)	No	6/10/2010	1/6/2014	μg/L	8	0	0	0.6	0.6	7	-	6.0	40 CFR 141, federal MCL	No	No
Antimony (Method 200.8 results)	Yes	6/10/2010	1/6/2014	μg/L	8	0	0	0.3	0.6			6.0	40 CFR 141, federal MCL	No	No
Cadmium (all results)	No	2/15/2008	1/6/2014	μg/L	49	1	2.04	0.1	4	0.116	0.116	0.25	Clean Water Act, freshwater CCC	No	Yes
Cadmium (all results)	Yes	2/15/2008	1/6/2014	μg/L	36	2	5.56	0.05	4	4.2	4.6	0.25	Clean Water Act, freshwater CCC	No	Yes
Cadmium (Method 6010 results)	No	2/15/2008	12/9/2013	μg/L	41	0	0	0.91	4		-	0.25	Clean Water Act, freshwater CCC	Yes	Yes
Cadmium (Method 6010 results)	Yes	2/15/2008	4/28/2011	μg/L	28	0	0	4	4.6		1	0.25	Clean Water Act, freshwater CCC	Yes	Yes
Cadmium (Method 200.8 results)	No	6/10/2010	1/6/2014	μg/L	8	1	12.5	0.1	0.2	0.12	0.12	0.25	Clean Water Act, freshwater CCC	No	No
Cadmium (Method 200.8results)	Yes	6/10/2010	1/6/2014	μg/L	8	0	0	0.05	0.2	7	-	0.25	Clean Water Act, freshwater CCC	No	No
Cobalt (all results)	No	2/15/2008	1/6/2014	μg/L	49	1	2.04	0.1	5	0.312	0.312	4.8	WAC 173-340-720(4)(b)(iii)(A) and (B)	No	Yes
Cobalt (all results)	Yes	2/15/2008	1/6/2014	μg/L	36	6	16.7	0.05	5	0.13	6.5	4.8	WAC 173-340-720(4)(b)(iii)(A) and (B)	No	Yes
Cobalt (Method 6010 results)	No	2/15/2008	12/9/2013	μg/L	41	0	0	4	5		-	4.8	WAC 173-340-720(4)(b)(iii)(A) and (B)	No	Yes
Cobalt (Method 6010 results)	Yes	2/15/2008	4/28/2011	μg/L	28	2	7.14	4	5	4.3	6.5	4.8	WAC 173-340-720(4)(b)(iii)(A) and (B)	No	Yes
Cobalt (Method 200.8 results)	No	6/10/2010	1/6/2014	μg/L	8	1	12.5	0.1	0.1	0.31	0.31	4.8	WAC 173-340-720(4)(b)(iii)(A) and (B)	No	No
Cobalt (Method 200.8 results)	Yes	6/10/2010	1/6/2014	μg/L	8	4	50	0.05	0.1	0.13	0.91	4.8	WAC 173-340-720(4)(b)(iii)(A) and (B)	No	No
Nickel (all results)	No	2/15/2008	1/6/2014	μg/L	49	6	12.24	0.2	66.5	0.234	7.7	52.0	Clean Water Act, freshwater CCC	No	Yes
Nickel (Method 6010 results)	No	2/15/2008	12/9/2013	μg/L	44	2	4.54	4	66.5	5.6	7.7	52.0	Clean Water Act, freshwater CCC	No	Yes
Nickel (Method 200.8 results)	No	12/31/2013	1/6/2014	μg/L	5	4	80	0.2	0.2	0.23	0.85	52.0	Clean Water Act, freshwater CCC	No	No
Silver (all results)	No	2/15/2008	1/6/2014	μg/L	45	1	2.22	0.1	7	39	39	2.6	WAC 173-201A	No	Yes
Silver (all results)	Yes	2/15/2008	1/6/2014	μg/L	34	3	8.82	0.05	7	7	8.1	2.6	WAC 173-201A	No	Yes
Silver (Method 6010 results)	No	2/15/2008	12/9/2013	μg/L	37	1	2.70	4	7	39	39	2.6	WAC 173-201A	Yes	Yes
Silver (Method 6010 results)	Yes	2/15/2008	4/28/2011	μg/L	26	3	11.5	5	7	7	8.1	2.6	WAC 173-201A	Yes	Yes
Silver (Method 200.8 results)	No	6/10/2010	1/6/2014	μg/L	8	0	0	0.1	0.2		1	2.6	WAC 173-201A	No	No
Silver (Method 200.8 results)	Yes	6/10/2010	1/6/2014	μg/L	8	0	0	0.05	0.2	-		2.6	WAC 173-201A	No	No

Table 6-16. Comparison of MDLs from 200-PO-1 Groundwater OU Near River Exposure Area to Human Health and Aquatic Comparison Values (Some MDLs Less Than or Equal to Comparison Value)

Analyte Name	Filtered?	First Sample Date	Last Sample Date	Units	Number of Results	Number of Detects	Frequency of Detects (%)	Min. Nondetect	Max. Nondetect	Min. Detect	Max. Detect	Comparison Value	Comparison Value Basis	Is Min. Nondetect > Comparison Value?	Is Max. Nondetect > Comparison Value?
					,		Organochlorin	ne Pesticides			,				
Heptachlor	No	11/3/2008	12/31/2013	μg/L	8	0	0	0.0025	0.0096			0.0038	Clean Water Act, freshwater CCC	No	Yes
Heptachlor epoxide	No	11/3/2008	12/31/2013	μg/L	8	0	0	0.0032	0.016	3	7-5	0.0038	Clean Water Act, freshwater CCC	No	Yes
	,						Radionu	clides						•	
Protactinium-231	No	11/3/2008	1/6/2014	pCi/L	9	0	0	-58	51			15.0	40 CFR 141, federal MCL	No	Yes
	·						Semivolatile Orga	nic Compounds							
Aramite	No	6/10/2010	1/6/2014	μg/L	6	0	0	0.9	20			3.5	WAC 173-340-720(4)(b)(iii)(A) and (B)	No	Yes
Diallate	No	6/10/2010	1/6/2014	μg/L	6	0	0	0.9	2			1.4	WAC 173-340-720(4)(b)(iii)(A) and (B)	No	Yes
Hexachlorophene	No	6/10/2010	1/6/2014	μg/L	6	0	0	0.9	10		-	4.8	WAC 173-340-720(4)(b)(iii)(A) and (B)	No	Yes
			1		,		Volatile Organi	c Compounds				,		'	
1,1,2,2-Tetrachloroethane	No	11/3/2008	1/6/2014	μg/L	14	0	0	0.098	1		-	0.22	WAC 173-340-720(4)(b)(iii)(A) and (B)	No	Yes
1,1,2-Trichloroethane	No	2/15/2008	1/6/2014	μg/L	47	0	0	0.063	1	3	-	0.77	WAC 173-340-720(4)(b)(iii)(A) and (B)	No	Yes
1,2-Dichloroethane	No	2/15/2008	1/6/2014	μg/L	47	0	0	0.1	1			0.48	WAC 173-340-720(4)(b)(iii)(A) and (B)	No	Yes
Acrolein	No	11/3/2008	1/6/2014	μg/L	14	0	0	0.52	5)/	1	3.0	Clean Water Act, freshwater CCC	No	Yes
Benzene	No	2/15/2008	1/6/2014	μg/L	47	0	0	0.032	1		-	0.80	WAC 173-340-720(4)(b)(iii)(A) and (B)	No	Yes
Bromodichloromethane	No	11/3/2008	1/6/2014	μg/L	14	0	0	0.088	1	3	1	0.71	WAC 173-340-720(4)(b)(iii)(A) and (B)	No	Yes
Carbon tetrachloride	No	2/15/2008	1/6/2014	μg/L	47	1	2.13	0.042	1	1.3	1.3	0.63	WAC 173-340-720(4)(b)(iii)(A) and (B)	No	Yes
cis-1,3-Dichloropropene	No	11/3/2008	1/6/2014	μg/L	14	0	0	0.073	1			0.44	WAC 173-340-720(4)(b)(iii)(A) and (B)	No	Yes
Dibromochloromethane	No	11/3/2008	1/6/2014	μg/L	14	0	0	0.13	1			0.52	WAC 173-340-720(4)(b)(iii)(A) and (B)	No	Yes
Methacrylonitrile	No	11/3/2008	1/6/2014	μg/L	14	0	0	0.5	2		-	0.80	WAC 173-340-720(4)(b)(iii)(A) and (B)	No	Yes
trans-1,3-Dichloropropene	No	11/3/2008	1/6/2014	μg/L	14	0	0	0.08	1	1	-	0.44	WAC 173-340-720(4)(b)(iii)(A) and (B)	No	Yes
Trichloroethene	No	2/15/2008	1/6/2014	μg/L	47	0	0	0.11	1		[]	1.0	WAC 173-340-720(4)(b)(iii)(A) and (B)	No	Yes
Vinyl chloride	No	2/15/2008	1/6/2014	μg/L	47	0	0	0.032	1		-	0.061	WAC 173-340-720(4)(b)(iii)(A) and (B)	No	Yes

Table 6-17. Comparison of MDLs from 200-PO-1 Groundwater OU Near River Exposure Area to Human Health and Aquatic Comparison Values (All MDLs Less Than or Equal to Comparison Value)

Analyte Name	Filtered?	First Sample Date	Last Sample Date	Units	Number of Results	Number of Detects	Frequency of Detects (%)	Min. Nondetect	Max. Nondetect	Min. Detect	Max. Detect	Comparison Value	Comparison Value Basis	Is Min. Nondetect > Comparison Value?	Is Max. Nondetect > Comparison Value?
							Meta	nls							
Arsenic	No	11/3/2008	1/6/2014	μg/L	15	14	93.33	25	25	1.58	6.76	7.9	DOE/RL-96-61, Table ES-1	Yes	Yes
Mercury	No	6/10/2010	1/6/2014	μg/L	6	0	0	0.1	0.1			0.012	40 CFR 131, freshwater CCC	Yes	Yes
Mercury	Yes	6/10/2010	1/6/2014	μg/L	6	0	0	0.05	0.1			0.012	40 CFR 131, freshwater CCC	Yes	Yes
							Organochlorin	ne Pesticides							
4,4'-DDT (Dichlorodiphenyltrichloroethane)	No	11/3/2008	12/31/2013	μg/L	8	0	0	0.0056	0.022		=	0.0010	Clean Water Act, freshwater CCC	Yes	Yes
Aldrin	No	11/3/2008	12/31/2013	μg/L	8	0	0	0.004	0.0096	-		0.0019	WAC 173-201A	Yes	Yes
Chlordane	No	11/3/2008	12/31/2013	μg/L	8	0	0	0.095	0.18			0.0043	Clean Water Act, freshwater CCC	Yes	Yes
Dieldrin	No	11/3/2008	12/31/2013	μg/L	8	0	0	0.0023	0.0096	-		0.0019	40 CFR 131, freshwater CCC	Yes	Yes
Endrin	No	11/3/2008	12/31/2013	μg/L	8	0	0	0.0028	0.017	Ε.	1	0.0023	40 CFR 131, freshwater CCC	Yes	Yes
Toxaphene	No	11/3/2008	12/31/2013	μg/L	8	0	0	0.25	0.33		-	0.00020	Clean Water Act, freshwater CCC	Yes	Yes
			ı				Semivolatile Orga	nic Compounds			1				
1,2,3-Trichloropropane	No	11/3/2008	1/6/2014	μg/L	14	0	0	0.15	1			0.0015	WAC 173-340-720(4)(b)(iii)(A) and (B)	Yes	Yes
2,4-Dinitrotoluene	No	6/10/2010	1/6/2014	μg/L	6	0	0	0.9	1			0.28	WAC 173-340-720(4)(b)(iii)(A) and (B)	Yes	Yes
2-Acetylaminofluorene	No	6/10/2010	1/6/2014	μg/L	6	0	0	0.9	1			0.023	WAC 173-340-720(4)(b)(iii)(A) and (B)	Yes	Yes
2-Naphthylamine	No	6/10/2010	1/6/2014	μg/L	6	0	0	1	1			0.049	WAC 173-340-720(4)(b)(iii)(A) and (B)	Yes	Yes
3,3'-Dichlorobenzidine	No	6/10/2010	1/6/2014	μg/L	6	0	0	0.9	1			0.19	WAC 173-340-720(4)(b)(iii)(A) and (B)	Yes	Yes
3,3'-Dimethylbenzidine	No	6/10/2010	1/6/2014	μg/L	6	0	0	2.6	4			0.0080	WAC 173-340-720(4)(b)(iii)(A) and (B)	Yes	Yes
3-Methylcholanthrene	No	6/10/2010	1/6/2014	μg/L	6	0	0	0.9	1			0.0040	WAC 173-340-720(4)(b)(iii)(A) and (B)	Yes	Yes
4-Aminobiphenyl	No	6/10/2010	1/6/2014	μg/L	6	0	0	1	1			0.0042	WAC 173-340-720(4)(b)(iii)(A) and (B)	Yes	Yes
4-Chloroaniline	No	6/10/2010	1/6/2014	μg/L	6	0	0	0.9	1			0.22	WAC 173-340-720(4)(b)(iii)(A) and (B)	Yes	Yes
7,12-Dimethylbenz[a]anthracene	No	6/10/2010	1/6/2014	μg/L	6	0	0	0.9	1	1997	-	0.00035	WAC 173-340-720(4)(b)(iii)(A) and (B)	Yes	Yes
Azobenzene	No	6/10/2010	12/7/2010	μg/L	3	0	0	1	1			0.40	WAC 173-340-720(4)(b)(iii)(A) and (B)	Yes	Yes
Benzo(a)anthracene	No	6/10/2010	1/6/2014	μg/L	6	0	0	0.9	1		-	0.12	WAC 173-340-720(4)(b)(iii)(A) and (B)	Yes	Yes
Benzo(a)pyrene	No	6/10/2010	1/6/2014	μg/L	6	0	0	0.9	1			0.012	WAC 173-340-720(4)(b)(iii)(A) and (B)	Yes	Yes
Benzo(b)fluoranthene	No	6/10/2010	1/6/2014	μg/L	6	0	0	0.9	1			0.12	WAC 173-340-720(4)(b)(iii)(A) and (B)	Yes	Yes
Benzo(k)fluoranthene	No	6/10/2010	1/6/2014	μg/L	6	0	0	0.9	1			0.12	WAC 173-340-720(4)(b)(iii)(A) and (B)	Yes	Yes
Bis(2-chloro-1-methylethyl)ether	No	6/10/2010	1/6/2014	μg/L	6	0	0	0.9	1		-	0.63	WAC 173-340-720(4)(b)(iii)(A) and (B)	Yes	Yes
Bis(2-chloroethyl) ether	No	6/10/2010	1/6/2014	μg/L	6	0	0	0.9	1			0.040	WAC 173-340-720(4)(b)(iii)(A) and (B)	Yes	Yes
Chlorobenzilate	No	6/10/2010	1/6/2014	μg/L	6	0	0	0.9	1			0.80	WAC 173-340-720(4)(b)(iii)(A) and (B)	Yes	Yes
Dibenz[a,h]anthracene	No	6/10/2010	1/6/2014	μg/L	6	0	0	0.9	1			0.12	WAC 173-340-720(4)(b)(iii)(A) and (B)	Yes	Yes

Table 6-17. Comparison of MDLs from 200-PO-1 Groundwater OU Near River Exposure Area to Human Health and Aquatic Comparison Values (All MDLs Less Than or Equal to Comparison Value)

Analyte Name	Filtered?	First Sample Date	Last Sample Date	Units	Number of Results	Number of Detects	Frequency of Detects (%)	Min. Nondetect	Max. Nondetect	Min. Detect	Max. Detect	Comparison Value	Comparison Value Basis	Is Min. Nondetect > Comparison Value?	Is Max. Nondetect > Comparison Value?
Disulfoton	No	6/10/2010	1/6/2014	μg/L	6	0	0	0.9	1			0.64	WAC 173-340-720(4)(b)(iii)(A) and (B)	Yes	Yes
Hexachlorobenzene	No	6/10/2010	1/6/2014	μg/L	6	0	0	0.9	1			0.055	WAC 173-340-720(4)(b)(iii)(A) and (B)	Yes	Yes
Hexachlorobutadiene	No	6/10/2010	1/6/2014	μg/L	6	0	0	0.9	1			0.56	WAC 173-340-720(4)(b)(iii)(A) and (B)	Yes	Yes
Indeno(1,2,3-cd)pyrene	No	6/10/2010	1/6/2014	μg/L	6	0	0	0.9	1			0.12	WAC 173-340-720(4)(b)(iii)(A) and (B)	Yes	Yes
Kepone	No	6/10/2010	1/6/2014	μg/L	6	0	0	0.9	20			0.0088	WAC 173-340-720(4)(b)(iii)(A) and (B)	Yes	Yes
Methyl Methanesulfonate	No	6/10/2010	1/6/2014	μg/L	6	0	0	0.9	1			0.88	WAC 173-340-720(4)(b)(iii)(A) and (B)	Yes	Yes
Nitrosopyrrolidine	No	6/10/2010	1/6/2014	μg/L	6	0	0	0.9	1			0.021	WAC 173-340-720(4)(b)(iii)(A) and (B)	Yes	Yes
n-Nitrosodiethylamine	No	6/10/2010	1/6/2014	μg/L	6	0	0	0.9	1			0.00029	WAC 173-340-720(4)(b)(iii)(A) and (B)	Yes	Yes
n-Nitrosodimethylamine	No	6/10/2010	1/6/2014	μg/L	6	0	0	0.9	2			0.00086	WAC 173-340-720(4)(b)(iii)(A) and (B)	Yes	Yes
n-Nitrosodi-n-butylamine	No	6/10/2010	1/6/2014	μg/L	6	0	0	0.9	1		3	0.0081	WAC 173-340-720(4)(b)(iii)(A) and (B)	Yes	Yes
n-Nitrosodi-n-dipropylamine	No	6/10/2010	1/6/2014	μg/L	6	0	0	0.9	1			0.013	WAC 173-340-720(4)(b)(iii)(A) and (B)	Yes	Yes
n-Nitrosomethylethylamine	No	6/10/2010	1/6/2014	μg/L	6	0	0	0.9	1	-		0.0040	WAC 173-340-720(4)(b)(iii)(A) and (B)	Yes	Yes
n-Nitrosomorpholine	No	6/10/2010	1/6/2014	μg/L	6	0	0	0.9	1			0.013	WAC 173-340-720(4)(b)(iii)(A) and (B)	Yes	Yes
n-Nitrosopiperidine	No	6/10/2010	1/6/2014	μg/L	6	0	0	0.9	1		1	0.0093	WAC 173-340-720(4)(b)(iii)(A) and (B)	Yes	Yes
Parathion	No	6/10/2010	1/6/2014	μg/L	6	0	0	0.9	1			0.013	Clean Water Act, freshwater CCC	Yes	Yes
p-Dimethylaminoazobenzene	No	6/10/2010	1/6/2014	μg/L	6	0	0	0.9	1			0.019	WAC 173-340-720(4)(b)(iii)(A) and (B)	Yes	Yes
Pentachloroethane	No	6/10/2010	1/6/2014	μg/L	6	0	0	0.9	1			0.49	WAC 173-340-720(4)(b)(iii)(A) and (B)	Yes	Yes
Pentachloronitrobenzene (PCNB)	No	6/10/2010	1/6/2014	μg/L	6	0	0	1	1			0.34	WAC 173-340-720(4)(b)(iii)(A) and (B)	Yes	Yes
Pentachlorophenol	No	11/3/2008	1/6/2014	μg/L	12	0	0	0.9	2			0.22	WAC 173-340-720(4)(b)(iii)(A) and (B)	Yes	Yes
Safrol	No	6/10/2010	1/6/2014	μg/L	6	0	0	0.9	1			0.4	WAC 173-340-720(4)(b)(iii)(A) and (B)	Yes	Yes
	·	,	,				Volatile Organic	Compounds						,	-
1,2-Dibromo-3-chloropropane	No	11/3/2008	1/6/2014	μg/L	14	0	0	0.41	1			0.055	WAC 173-340-720(4)(b)(iii)(A) and (B)	Yes	Yes
1,2-Dibromoethane	No	11/3/2008	1/6/2014	μg/L	14	0	0	0.13	1			0.022	WAC 173-340-720(4)(b)(iii)(A) and (B)	Yes	Yes
1,4-Dioxane	No	11/3/2008	1/6/2014	μg/L	14	0	0	0.9	7.6			0.44	WAC 173-340-720(4)(b)(iii)(A) and (B)	Yes	Yes
Acrylonitrile	No	12/9/2013	12/31/2013	μg/L	3	0	0	5	5		-	0.059	40 CFR 131, freshwater CCC	Yes	Yes

SGW-56759, REV. 0

2 This page intentionally left blank.

- 1 Cobalt has a detection frequency of 23 percent in unfiltered samples and a detection frequency of
- 2 87 percent in unfiltered samples. A small percentage of results analyzed by Method 6010 report MDLs
- 3 greater than the comparison value. The MDL results reported by Method 6010 greater than the
- 4 comparison value are not considered usable for RI/FS decision-making purposes because they cannot be
- 5 used to confirm their absence at concentrations less than the comparison value. The following
- 6 summarizes the number of MDLs for cobalt analyzed by Method 6010 that are not considered usable:
- 7 Total cobalt: 64 of 1,175 MDLs (5.4 percent) are greater than the comparison value of 4.6 μg/L.
- 8 **Dissolved cobalt:** 58 of 1,006 MDLs (5.8 percent) are greater than the comparison value of 4.6 μg/L.
- 9 The remaining 16 analytes listed in Table 6-13 were not detected in any of the groundwater samples and
- are not known to be associated with a release in the 200 East Area. Results associated with these analytes
- are considered usable for concluding that these analytes are absent from groundwater.
- 12 As shown in Table 6-14, 53 analytes report all MDLs greater than their respective comparison value.
- 13 Included in this group of analytes are two of the 42 COPCs identified in the RI/FS Work Plan
- 14 (DOE/RL-2007-31, Appendix A). Analytes identified as COPCs and analytes with detections are
- 15 discussed below.
- 1,4-Dioxane and pentachlorophenol were identified as COPCs in the RI/FS Work Plan
- 17 (DOE/RL-2007-31, Appendix A). These two analytes were not detected in any groundwater sample.
- 18 The laboratory cannot attain the comparison value for 1,4-dioxane (0.44 μg/L) or pentachlorophenol
- 19 (0.22 μ g/L); therefore, nondetected concentrations are reported as less than or equal to 12 μ g/L for
- 20 1,4-dioxane and less than or equal to 2.4 μg/L for pentachlorophenol. The MDLs reported for 1,4-dioxane
- 21 and pentachlorophenol are less than the practical quantitation limits of 500 μg/L and 10 μg/L,
- respectively, listed in Appendix A of the RI/FS Work Plan. The MDLs for these analytes are considered
- usable because analytical laboratories generally cannot attain concentrations less than or equal to the
- 24 comparison values.
- 25 With the exception of a single detection of n-nitrosodi-n-propylamine, the 51 analytes listed in Table 6-14
- were not detected in any of the groundwater samples and are not known to be associated with a release in
- 27 the 200 East Area. These analytes were reported with multi-component method-based analytical methods.
- 28 This single detection is considered suspect because its presence is anomalous relative to additional
- sampling events at the same well (see Appendix B for trend charts). Results associated with these analytes
- are considered usable for concluding that these analytes are absent from groundwater.
- 31 6.4.2 MDL Results for Near-River Groundwater Samples
- 32 As shown in Table 6-15, all MDLs for 161 analytes are less than or equal to their respective comparison
- value. The MDLs for these analytes are considered usable for all RI/FS purposes. Included in this group
- of analytes are 26 of the 42 COPCs identified in the RI/FS Work Plan (DOE/RL-2007-31, Appendix A).
- 35 The MDLs for all analytes listed in Table 6-12 are considered usable for all RI/FS purposes.
- 36 As shown in Table 6-16, 28 analytes are reported with a portion of the MDLs greater than their respective
- comparison value. Included in this group of analytes are 13 of the 42 COPCs identified in the RI/FS
- Work Plan (DOE/RL-2007-31, Appendix A). Analytes identified as COPCs and analytes with detections
- 39 are discussed below.
- 40 1,1,2,2-Tetrachloroethane, 1,2-dichloroethane, benzene, heptachlor, heptachlor epoxide, trichloroethene
- and vinyl chloride were identified as COPCs in the RI/FS Work Plan (DOE/RL-2007-31, Appendix A).
- These seven analytes were not detected in any of the groundwater samples, although a portion of the
- 43 MDLs are greater than their respective comparison value, and all MDLs are less than the practical

- 1 quantitation limit listed in the RI/FS Work Plan. The results of these analyses are considered usable for
- 2 concluding these analytes are absent at concentrations less than their respective comparison values.
- 3 Carbon tetrachloride was identified as a COPC in the RI/FS Work Plan (DOE/RL-2007-31, Appendix A).
- 4 The laboratory cannot attain the comparison value for carbon tetrachloride (0.63 µg/L); therefore,
- 5 nondetected concentrations are reported as less than or equal to 1 µg/L. The MDLs reported for carbon
- 6 tetrachloride are less than the practical quantitation limit of 2 µg/L listed in Appendix A of the
- 7 RI/FS Work Plan. A single detection of carbon tetrachloride was reported in groundwater, and this
- 8 detection is considered suspect because its presence is anomalous relative to additional sampling events
- 9 at the same well (see Appendix B for trend charts). Results associated with carbon tetrachloride are
- 10 considered usable for concluding its absence from groundwater.
- Protactinium-231 was identified as a COPC in the RI/FS Work Plan (DOE/RL-2007-31, Appendix A).
- 12 A small percentage of MDLs for iodine-129 (one of nine MDLs) are greater than the comparison value of
- 13 15 pCi/L. Protactinium-231 was not detected in any groundwater sample. Results associated with
- protactinium-231 are considered usable for concluding its absence from groundwater.
- 15 Five metals (antimony, cadmium, cobalt, nickel, and silver) report a portion of their MDLs at
- 16 concentrations above the comparison values. Groundwater samples were analyzed using the following
- 17 analytical methods:
- ICP/AES using EPA Method 6010 in SW-846
- ICP/MS using EPA Method 200.8
- As shown in Table 6-16, results for each of these metals are presented separately based on the analytical
- 21 method used (e.g., Method 6010 results or Method 200.8 results). The MDLs for all five metals analyzed
- by Method 200.8 are reported at concentrations less than their respective comparison value; these results
- are considered usable for all RI/FS decision-making purposes.
- Antimony, cadmium, cobalt, and silver each have low detection frequencies (less than 12 percent).
- 25 These five metals also report a high percentage of MDLs analyzed by Method 6010 that are greater than
- 26 their respective comparison values. The MDL results reported by Method 6010 are not considered usable
- 27 for RI/FS decision-making purposes because the results cannot be used to confirm the absence of these
- 28 metals at concentrations less than the comparison value. The following summarizes the number of MDL
- results for analyzed by Method 6010 that are not considered usable:
- Total antimony: All 40 MDLs (100 percent) are greater than comparison value of 6 μg/L.
- **Dissolved antimony:** All 28 MDLs (100 percent) are greater than comparison value of 6 μg/L.
- Total cadmium: All 41 MDLs are less than the human health comparison value of 5 μg/L, and all
- 41 MDLs (100 percent) are greater than the aquatic comparison value of 0.25 μg/L.
- **Dissolved cadmium:** All 28 MDLs (100 percent) are greater than the aquatic comparison value of
- 35 $0.25 \,\mu g/L$.
- Total cobalt: Eight of 41 MDLs (20 percent) are greater than the comparison value of 4.6 μg/L.
- **Dissolved cobalt:** Eight of 26 MDLs (31 percent) are greater than the comparison value of 4.6 μg/L.
- 38 Total silver: All 36 MDLs are less than the human health comparison value of 80 μg/L, and all
- 36 MDLs (100 percent) are greater than the aquatic comparison value of 2.6 μ g/L.

- Dissolved silver: All 23 MDLs (100 percent) are greater than the aquatic comparison value of
 2.6 μg/L.
- 3 It should be noted that one of 41 MDLs reported for total nickel was greater than the aquatic comparison
- 4 value of 52 μg/L and is not considered usable.
- 5 The remaining 14 analytes listed in Table 6-16 were not detected in any of the groundwater samples and
- 6 are not known to be associated with a release in the 200 East Area. Results associated with these analytes
- 7 are considered usable for concluding they are absent from groundwater.
- 8 As shown in Table 6-17, 52 analytes report all MDLs greater than their respective comparison value.
- 9 Included in this group of analytes are two of the 42 COPCs identified in the RI/FS Work Plan
- 10 (DOE/RL-2007-31, Appendix A). Analytes identified as COPCs and analytes with detections are
- 11 discussed below.
- 12 1,4-Dioxane and pentachlorophenol were identified as COPCs in the RI/FS Work Plan
- 13 (DOE/RL-2007-31, Appendix A). These two analytes were not detected in any groundwater sample.
- 14 The laboratory cannot attain the comparison value for 1,4-dioxane (0.44 μg/L) or pentachlorophenol
- 15 (0.22 μg/L); therefore, nondetected concentrations are reported as less than or equal to 7.6 μg/L for
- 1,4-dioxane and less than or equal to 2 μg/L for pentachlorophenol. The MDLs reported for 1,4-dioxane
- and pentachlorophenol are less than the practical quantitation limits of 500 μ g/L and 10 μ g/L,
- respectively, listed in Appendix A of the RI/FS Work Plan. The MDLs for these analytes are considered
- usable because analytical laboratories generally cannot attain concentrations less than or equal to the
- 20 comparison values.
- 21 The remaining 50 analytes listed in Table 6-17 were not detected in any of the groundwater samples and
- are not known to be associated with a release in the 200 East Area. These analytes were reported with
- 23 multi-component method-based analytical methods. Results associated with these analytes are considered
- 24 usable for concluding they are absent from groundwater.

25 6.5 Comparability – Trend Charts

- A list of analytical methods used for groundwater samples collected within the 200-PO-1 Groundwater
- 27 OU is provided in Table 1-2. All groundwater data were collected and analyzed in accordance with
- 28 Hanford Analytical Services Quality Assurance Requirements Documents (HASQARD) (DOE/RL-96-68)
- and the testing specified and used methods based on the SW-846, along with current radiochemical
- methods. All of these methods have been specified for Hanford Site work for greater than 10 years;
- 31 therefore, the data should be compatible and comparable over time.
- 32 Appendix B contains trend charts produced for a number of analytes that were reported at concentrations
- greater than their respective comparison value (see Table 5-4). These charts plot the concentration of the
- target analyte at a specific monitoring well from measurements that have been collected over the past
- 35 10 years. The purpose of these charts is to determine if the results are associated with an upward or
- downward trend (the results for an analyte appear to be comparable), or if a result appears to be
- anomalous and is not consistent or comparable with results obtained over the 10-year time period.

1

2

This page intentionally left blank.

7 Hanford Groundwater Report Review

- 2 The CHPRC Soil and Groundwater Remediation Project collects groundwater samples, as needed, to
- 3 address characterization and monitoring requirements for the various compliance programs at the
- 4 Hanford Site (i.e., RCRA, CERCLA, the *Atomic Energy Act of 1954*, HASQARD [DOE/RL-96-68], and
- 5 CHPRC-00189, CH2M Hill Plateau Remediation Company Environmental Quality Assurance Program
- 6 Plan). The results from sample analyses are evaluated and compiled into an annual Hanford Site
- 7 groundwater monitoring report. The annual groundwater monitoring report includes an appendix that
- 8 provides an overview of the QA/QC information generated to support these programs. As discussed in
- 9 Chapter 3 of this report, the purpose of Step 5 of the DQA process is to draw conclusions from the data.
- Steps 3 and 4 of the DQA process were not applicable because groundwater data for the 200-BP-5
- 11 Groundwater OU were collected using a judgmental sample design. As such, the results presented in
- 12 Chapters 6, 7, and 8 are used to draw conclusions about the usability of the data.
- Review of the Hanford Site annual groundwater monitoring report provides information regarding the
- overall quality and performance of the groundwater sampling and analytical activities. The 200-PO-1
- 15 Groundwater OU data are a subset of the overall Hanford Site groundwater monitoring program described
- in the annual report. As an evaluation of the quality of the 200-PO-1 Groundwater OU data, it is useful to
- 17 compare the performance metrics of the 200-PO-1 Groundwater OU data to the overall Hanford Site
- 18 groundwater data set.

1

- 19 Table 7-1 summarizes the QA/QC results for Hanford Site groundwater monitoring over the time period
- 20 considered in this DQA report, as well as the QA/QC results for the 200-PO-1 Groundwater OU data set.
- 21 Results are not provided for all QA/QC parameters for all years because of the variations in how the data
- are compiled in each annual report. Citations are provided for each annual report for readers who wish to
- 23 review the details for a specific year. As shown in Table 7-1, the 200-PO-1 Groundwater OU data set was
- 24 equivalent or better than the Hanford Sitewide data set (as summarized in the Hanford Site annual
- 25 groundwater monitoring reports) in terms of field and laboratory QC performance.
- 26 7.1.1 Hanford Site Groundwater Quality Control and Quality Assurance
- 27 The Hanford Site groundwater program includes several QA elements that serve to verify the overall
- 28 quality of the sampling and analysis activities and to highlight potential problems for corrective action.
- 29 The following activities are included:
- Proficiency testing program studies: Involve the provision of blind known standards to all
- Hanford Site contract laboratories. These programs are administered by independent third-party
- organizations, and the results are available to data users on the Hanford Site.
- **Double-blind studies:** Involve providing known standards to the laboratory disguised as samples.
- These provide a measure of both inter- and intra-laboratory precision and accuracy. The studies also
- 35 help groundwater staff troubleshoot analytical problems identified through data reviews and
- 36 QC evaluations.
- Laboratory audits: Performed either independently from the Hanford Site or as part of a DOE
- 38 contract analytical program national audit team.
- Laboratory QA/QC evaluation: Performed on the entire Hanford Site data set annually and reported
- as part of the annual groundwater monitoring reports.

- 1 Review of the results of these evaluations did not identify any issues that could negatively affect the
- 2 200-PO-1 Groundwater OU data that had not already been evaluated and resolved, either with
- 3 qualification flags or re-run samples.
- 4 7.1.1.1 Analytical Troubleshooting
- 5 If the results of any of the data QC or QA reviews indicate a potential anomaly in the results, RDRs are
- 6 initiated by project scientists. During evaluations of RDR submittals, trends may be observed that warrant
- 7 further investigation by the groundwater support staff.
- 8 In 2008, RDRs had been filed for 1,677 of approximately 128,000 analytical results (1.3 percent), of
- 9 which 578 were suspect, 112 rejected, and one questionable. Roughly half of the issues occurred prior to
- receipt at the laboratories. Most issues were because of missed hold times, samples received outside of
- temperature specifications, chain-of-custody issues, and incorrect sample preservation. RDR resolution
- includes appropriate qualification flags applied to the affected data within the HEIS database.
- In 2009, RDRs had been filed for 1,659 of approximately 206,000 analytical results (less than 1 percent),
- of which 675 were suspect, 80 rejected, and 4 questionable. The bulk of the RDRs (72 percent) were filed
- on metals results. RDRS also were filed on WSCF results from wet chemistry methods (10 percent),
- organic methods (6 percent), and radiological methods (12 percent). RDRs to the field and other
- 17 laboratories were scattered among a varied group of methods and issues. Approximately 17 percent of the
- 18 RDRs from the other laboratories were for iodine-129 analysis.
- In 2010, RDRs had been filed for 2,613 of approximately 245,705 analytical results (approximately
- 20 1 percent), of which 1,637 were suspect, and 16 rejected. The bulk of the requests RDRs (46 percent)
- 21 were filed on metals results. RDRs also were filed on WSCF results from wet chemistry methods
- 22 (6 percent), organic methods (20 percent), and radiological methods (28 percent). RDRs to the field and
- other laboratories were scattered among a varied group of methods and issues.
- 24 In 2011, RDRs had been filed for 1,406 of approximately 175,221 analytical results (approximately
- 25 1 percent), of which 661 were suspect, and 2 rejected. The bulk of the RDRs (57.5 percent) were filed on
- 26 metals results. RDRs also were filed on WSCF results from wet chemistry methods (18.5 percent),
- organic methods (14.4 percent), and radiological methods (9.6 percent). RDRs to the field and other
- 28 laboratories were scattered among a varied group of methods and issues.
- 29 In 2012, RDRs had been issued for three field blanks that had been swapped with well samples. All three
- 30 field blank types (equipment blank, field transfer blank, and field transfer blank) contributed to the
- 31 8,193 VOC field blank results. Of the 8,193 results, 149 (1.8 percent) exceeded QC limits and included
- 32 120 methylene chloride results and 23 acetone results.

Table 7-1. Quality Assurance/Quality Control Results for Groundwater Monitoring

	FY 2009 DOE/RL-2010-11	FY 2010 DOE/RL-2011-01	FY 2011 DOE/RL-2011-118	FY 2012 DOE/RL-2013-22	2008 Through 2013 DQA Results	FY 2008 DOE/RL-2008-66
Results of national performance evaluation studies – percent of acceptable results	98	_	98	_	_	_
Field blanks – percent of acceptable results	96	97	97	98	98.1	89.9
Field duplicates – percent of acceptable results	97	99	93	95	94.2	79.8
Split samples – percent of acceptable results	75	77	78	84	86.4	70.0
Holding times met – percent of nonradiological samples with acceptable results	99	99	99	99.6	99.6	99.7
Laboratory duplicates – percent of results within acceptance limits	97	99	99	99.2	97.5	85.2
Method blanks – percent without contamination	98	99.8	99.2	99.6	98.5	94
Laboratory control samples – percent of acceptable results	99	99.4	99.6	99	99.2	94.3
Matrix spike/matrix duplicates – percent of acceptable results	96	99	99	98.5	99.2	96.6
Surrogates – percent of acceptable results	99	_	97.5	97.5	98.4	97.4

SGW-56759, REV. 0

Table 7-1. Quality Assurance/Quality Control Results for Groundwater Monitoring

	FY 2009 DOE/RL-2010-11	FY 2010 DOE/RL-2011-01	FY 2011 DOE/RL-2011-118	FY 2012 DOE/RL-2013-22	2008 Through 2013 DQA Results	FY 2008 DOE/RL-2008-66
Requests for Data Review – Number of Analytical Results	1,677	1,659	2,613	1,406	3	

Sources: DOE/RL-2008-66, Hanford Site Groundwater Monitoring for Fiscal Year 2008.

DOE/RL-2010-11, Hanford Site Groundwater Monitoring and Performance Report for 2009: Volumes 1 & 2.

DOE/RL-2011-01, Hanford Site Groundwater Monitoring Report for 2010.

DOE/RL-2011-118, Hanford Site Groundwater Monitoring for 2011.

DOE/RL-2013-22, Hanford Site Groundwater Monitoring Report for 2012.

DQA = data quality assessment

FY = fiscal year

8 Field Quality Control

- 2 Groundwater results are evaluated by comparing the electronic field QC information to established field
- 3 QC performance requirements. Field performance requirements are listed in Table 8-1.

Table 8-1. Field Quality Control Acceptance Criteria

QC Element	Acceptance Criteria					
Field Duplicates	ld duplicates with at least one result five times greater than the MDL or MDA must re an RPD less than or equal to 20 percent to be considered acceptable.					
Field Split Samples	Splits sample results were evaluated when both results were at least five times greater than the MDL or MDA of the respective laboratories or when at least one result was greater than five times the MDL or MDA of both laboratories. In cases where a nondetected result was compared with a measured value, the MDL or MDA was used for the nondetected result. Split control limit is a RPD of less than or equal to 20 percent.					
Field Blanks	Because MDLs are specific to the laboratory and may change during the reporting period, the limits are presented as a range. However, each result was evaluated according to the MDL in effect at the time the sample was analyzed.					
MDA = minimum detectable activity QC = quality control						
MDL = method de	tection limit RPD = relative percent difference					

4

5

1

8.1 Field Quality Sample Results

- 6 During the period of this assessment, 30,196 field QC results were generated, which is approximately
- 7 21.6 percent of the total groundwater sample results obtained for the 200-PO-1 Groundwater OU.
- 8 These consisted of 4,668 field duplicate results; 416 field split results; and 25,112 field blank results,
- 9 which consisted of a combination of field transfer blanks, equipment rinsate blanks, full trip blanks, and
- trip blanks. A field trip blank is analyzed for all constituents rather than for only volatile organics. The
- following subsections provide further information on field QC results, as well as a breakdown of those
- results by analyte and field QC type. The field QC elements were evaluated against the criteria listed in
- 13 Table 8-1.
- 14 As discussed in Chapter 3 of this report, the purpose of Step 5 of the DQA process is to draw conclusions
- 15 from the data. Steps 3 and 4 of the DQA process were not applicable because groundwater data for the
- 16 200-BP-5 Groundwater OU were collected using a judgmental sample design. As such, the results
- presented in Chapters 6, 7, and 8 are used to draw conclusions about the usability of the data.

18 8.1.1 Field Quality Control Requirements

- 19 Field QC procedures must be followed in the field to ensure that reliable data are obtained. Field QC
- samples are collected to evaluate the potential for cross-contamination and to provide information
- 21 pertinent to field variability. Field QC for sampling generally requires the collection of field replicates
- 22 (duplicates), trip or field blanks, and equipment blanks.

23 8.1.1.1 Field Duplicate Samples

- 24 Field duplicate samples are two separate samples collected from the same source, placed in separate
- 25 sample containers, and analyzed independently to estimate precision, including sampling and analytical
- variability. The measure of precision for field duplicate samples is the RPD between duplicate pairs.

- 1 The RPD is calculated for a field duplicate sample only when one result or the other is at least five times
- 2 the detection limit.
- 3 Table 8-2 lists the total number of field duplicates reported in the 200-PO-1 Groundwater OU data set.
- 4 Table 8-3 shows a summary of the field duplicate results by analyte that exceeded the QC criteria listed
- 5 in Table 8-1.

Table 8-2. Total Field Duplicate Results by Analyte Class

Analyte Class	Results
Anions	103
General Chemistry	362
Metals	2,588
Radiochemistry	268
Semivolatile Organic Compounds	691
Volatile Organic Compounds	796
Total	4,808

6

- 7 In the 200-PO-1 Groundwater OU data set, 4,808 pairs of field duplicate samples were reported. Of these
- 8 4,808 pairs, 28 individual analytes had results that exceeded the acceptance criteria. There were
- 9 2,100 field duplicate pairs collected that were associated with these 28 analytes. Of these 2,100 field
- duplicates, 971 pairs met the evaluation criteria. Of these 971, 54 or 1.1 percent had results that exceeded
- the QC criteria. The RPDs of these exceedances range from 20.3 to 176.7. Analytes and properties with
- 12 RPDs greater than or equal to 50 percent include ammonium, coliform bacteria, aluminum, chromium,
- cobalt, copper, lead, uranium-235, chloromethane, and methylene chloride.

14 8.1.2 Field Split Samples

- 15 Field split samples are collected from a sampling location on the same day and time and submitted to two
- different laboratories for analysis. The purpose of such samples is to monitor the comparability of the data
- 17 generated by different laboratories. The acceptance criterion is an RPD less than or equal to 20 for the
- 18 two laboratory's results.
- 19 In the 200-PO-1 Groundwater OU data set, 432 pairs of split samples were reported. Of these 432 pairs,
- 20 only one analyte had results that exceeded the QC acceptance criteria listed in Table 8-1. Three pairs of
- 21 split samples collected were associated with this analyte. Two of the three pairs were evaluated. Of the
- two evaluated pairs, one pair (50 percent) was out of limits. The RPD of this exceedance was 29.9.
- Table 8-4 lists the total number of field split results reported in the 200-PO-1 Groundwater OU data set
- 24 by analyte class. Table 8-5 lists the field split results that exceeded the OC criteria by analyte. Analytes
- with high RPDs (greater than 50 percent) include cyanide, gross beta, technetium-99, and tin.

Table 8-3. Summary of Field Duplicate Results Exceeding Quality Control Criteria by Analyte

Analyte	Class	Total Number Collected	Number Evaluated ^a	Number Out of Limits ^b	Percent Out of Limits ^c	Range of Out of Limit RPD
Ammonium	Anions	12	3	2	66.7	128.1-170.4
Coliform Bacteria	General chemistry	8	1	1	100	23.2
Aluminum	Metals	11	2	1	50	30.3
Arsenic	Metals	65	46	5	10.9	22.2-65.5
Barium	Metals	131	126	1	0.79	27.3
Calcium	Metals	125	125	1	0.80	24.7
Chromium	Metals	131	4	2	50	22.2-114.3
Cobalt	Metals	131	2	1	50	170.4
Copper	Metals	131	2	2	100	67.3-176.7
Iron	Metals	124	22	8	36.4	21.1-107.7
Lead	Metals	36	3	2	66.7	26.8-155.5
Magnesium	Metals	125	125	1	0.80	24.5
Manganese	Metals	125	11	1	9.1	47.9
Nickel	Metals	125	7	1	14.3	107.8
Potassium	Metals	125	124	1	0.8	22.7
Silicon	Metals	5	5	1	20	24.1
Sodium	Metals	125	125	1	0.80	22.8
Strontium	Metals	125	125	1	0.80	23.7
Vanadium	Metals	125	13	2	15.4	20.5-33.7
Zinc	Metals	125	5	1	20	55.6

Table 8-3. Summary of Field Duplicate Results Exceeding Quality Control Criteria by Analyte

Analyte	Class	Total Number Collected	Number Evaluated ^a	Number Out of Limits ^b	Percent Out of Limits ^c	Range of Out of Limit RPD
Gross Alpha	Radiochemistry	46	3	1	33.3	40.5
Gross Beta	Radiochemistry	46	37	6	16.2	20.4-100
Iodine-129	Radiochemistry	23	14	5	35.7	29.4-78
Tritium	Radiochemistry	39	34	1	2.9	71.7
Uranium-233/234	Radiochemistry	3	3	1	33.3	20.3
Uranium-235	Radiochemistry	4	2	2	100	53.3-75
Chloromethane	VOC	3	1	1	100	150.1
Methylene Chloride	VOC	26	1	1	100	27.8
	Total	2,100	971	54		

a. Duplicates with at least one result five times greater than the method detection limit or minimum detectable activity were evaluated.

RPD = relative percent difference

VOC = volatile organic compound

b. Duplicate control limit is a relative percent difference less than or equal to 20 percent.

c. In cases where a nondetected result was compared with a measured value, the method detection limit or minimum detectable activity was used for the nondetected concentration.

Table 8-4. Total Field Split Results by Analyte Class

Analyte Class	Results
Anions	3
General Chemistry	63
Metals	0
Radiochemistry	12
Semivolatile Organic Compounds	55
Volatile Organic Compounds	299
Total	432

Table 8-5. Summary of Field Split Samples Exceeding Quality Control Criteria

Analyte Name	Analyte Class	Total Number of Splits Collected	Number of Splits Evaluated ^a	Number Out of Limits ^b	Percent Out of Limits ^c	Range of Out of Limit RPD
Tritium	Radiochemistry	3	2	1	50	29.88
	Total	3	2	1		

a. Splits sample results were evaluated when both results were at least five times greater than the method detection limit or minimum detectable activity of the respective laboratories, or when at least one result was greater than five times the method detection limit or minimum detectable activity of both laboratories. In cases where a nondetected result was compared with a measured value, the method detection limit or minimum detectable activity was used for the nondetected result.

b. Split control limit is a relative percent difference less than or equal to 20 percent.

c. The percent out of limits is based on the number of duplicates evaluated, not the total number of duplicates.

RPD = relative percent difference

2

1

8.1.3 Field Blank Samples

- 4 Three types of field blanks were gathered during the collection of 200-PO-1 Groundwater OU
- 5 groundwater samples: equipment rinsate blanks, field transfer blanks, and trip blanks. Equipment rinsate
- 6 blanks are high-purity water samples used in the final rinse of sampling equipment before the equipment
- 7 is reused to collect another sample. These blanks are not required for sampling events using disposable or
- 8 dedicated sampling equipment.
- 9 Field transfer blanks are generated by pouring laboratory water into sample containers in the field during
- a sampling event to detect any contaminants that may be introduced into groundwater during the
- bottle-filling activities. Trip blanks are clean water samples that are prepared in the laboratory and taken
- 12 into the field with the sampling crew. Trip blanks are a measure of potential contamination associated
- with sample collection and transportation to the laboratory.
- 14 For the purpose of the DQA, all blank results were pooled. Table 8-6 lists the total field blank results
- reported in the 200-PO-1 Groundwater OU data set by analyte class. Table 8-7 summarizes the field blank

1 results that exceeded QC criteria by analyte. There were 26,137 individual blank results reported with the

2 200-PO-1 Groundwater OU data set. Of the 26,137 results, 45 individual analytes exceeded the

3 acceptance criteria in Table 8-1. In total, 4,782 field blank results were associated with these 45 analytes.

4 Of these 4,782 results, 578 or 2.2 percent had results that exceeded the QC acceptance criteria. Analytes

5 and properties with high (greater than 10 percent) overall percentages of positive blanks include fluoride,

6 nitrate, sulfate, alkalinity, total organic carbon, total organic halides, calcium, cobalt, magnesium, sodium,

uranium, vanadium, gross beta, iodine-129, strontium-90, technetium-99, tritium, iodomethane, and

methylene chloride.

Table 8-6. Total Field Blank Results by Analyte Class

Analyte Class	Results
Anions	630
General Chemistry	391
Metals	4,566
Radiochemistry	627
Semivolatile Organic Compounds	1,066
Volatile Organic Compounds	18,857
Total	26,137

9

7

Table 8-7. Summary of Field Blank Results Exceeding Quality Control Criteria

Analyte Name	Analyte Class	Total Collected	Total Results Out of Limits*	Percent Out of Limits
Chloride	Anions	42	4	9.5
Fluoride	Anions	25	3	12
Nitrate	Anions	25	3	12
Sulfate	Anions	25	3	12
Alkalinity	General chemistry	5	1	20
Total Organic Carbon	General chemistry	43	5	11.6
Total Organic Halides	General chemistry	53	6	11.3
Arsenic	Metals	58	4	6.9
Barium	Metals	102	7	6.9
Calcium	Metals	192	53	27.6
Chromium	Metals	42	1	2.4
Cobalt	Metals	12	2	16.7
Copper	Metals	86	5	5.8

Table 8-7. Summary of Field Blank Results Exceeding Quality Control Criteria

Analyte Name	Analyte Class	Total Collected	Total Results Out of Limits*	Percent Out of Limits
Iron	Metals	134	5	3.7
Magnesium	Metals	190	37	19.5
Manganese	Metals	36	1	2.8
Molybdenum	Metals	24	2	8.3
Potassium	Metals	131	7	5.3
Silver	Metals	74	2	2.7
Sodium	Metals	216	46	21.3
Strontium	Metals	78	5	6.4
Uranium	Metals	8	1	12.5
Vanadium	Metals	16	2	12.5
Zinc	Metals	44	2	4.5
Gross Alpha	Radiochemistry	24	2	8.3
Gross Beta	Radiochemistry	36	4	11.1
Iodine-129	Radiochemistry	5	1	20
Selenium-79	Radiochemistry	1	1	100
Strontium-90	Radiochemistry	7	2	28.6
Technetium-99	Radiochemistry	7	1	14.3
Tritium	Radiochemistry	25	3	12
1,1-Dichloroethene	VOC	229	1	0.44
2-Butanone	VOC	75	1	1.3
4-Methyl-2-pentanone	VOC	19	1	5.3
Acetone	VOC	486	15	3.1
Benzene	VOC	23	1	4.3
Bromomethane	VOC	130	6	4.6
Carbon Tetrachloride	VOC	494	30	6.1
Chloroform	VOC	310	6	1.9
Chloromethane	VOC	130	9	6.9
Iodomethane	VOC	6	2	33.3
Methylene Chloride	VOC	642	281	43.8

Table 8-7. Summary of Field Blank Results Exceeding Quality Control Criteria

Analyte Name	Analyte Class	Total Collected	Total Results Out of Limits*	Percent Out of Limits
Tetrachloroethene	VOC	315	2	0.63
Toluene	VOC	88	1	1.1
Trichloroethene	VOC	69	1	1.4
	Total	4,782	578	

^{*} Because method detection limits are specific to the laboratory and may change during the reporting period, the limits are presented as a range. However, each result was evaluated according to the method detection limit in effect at the time the sample was analyzed.

VOC = volatile organic compound

1	9 References
2 3	40 CFR 141, "National Primary Drinking Water Regulations," <i>Code of Federal Regulations</i> . Available at: http://www.access.gpo.gov/nara/cfr/waisidx_09/40cfr141_09.html .
4	40 CFR 141.61, "Maximum Contaminant Levels for Organic Contaminants."
5	40 CFR 141.62, "Maximum Contaminant Levels for Inorganic Contaminants."
6	40 CFR 141.66, "Maximum Contaminant Levels for Radionuclides."
7 8	40 CFR 143, "National Secondary Drinking Water Regulations," <i>Code of Federal Regulations</i> . Available at: http://www.access.gpo.gov/nara/cfr/waisidx_09/40cfr143_09.html .
9	40 CFR 143.3, "Secondary Maximum Contaminant Levels."
10 11 12	40 CFR 300, "National Oil and Hazardous Substances Pollution Contingency Plan," Appendix B, "National Priorities List," <i>Code of Federal Regulations</i> . Available at: http://edocket.access.gpo.gov/cfr_2010/julqtr/40cfr300AppB.htm .
13 14	Atomic Energy Act of 1954, 42 USC 2011, et seq. Available at: http://www.nrc.gov/reading-rm/doc-collections/nuregs/staff/sr0980/ml022200075-vol1.pdf .
15 16	CHPRC-00189, 2014, CH2M Hill Plateau Remediation Company Environmental Quality Assurance Program Plan, Rev. 11, CH2M HILL Plateau Remediation Company, Richland, Washington.
17	Clean Water Act of 1977, 33 USC 1251, et seq. Available at: http://epw.senate.gov/water.pdf.
18 19	Comprehensive Environmental Response, Compensation, and Liability Act of 1980, 42 USC 9601, et seq. Available at: http://uscode.house.gov/download/pls/42C103.txt .
20 21 22	DOE/RL-96-61, 1997, <i>Hanford Site Background: Part 3, Groundwater Background</i> , Rev. 0, U.S. Department of Energy, Richland Operations Office, Richland, Washington. Available at: http://pdw.hanford.gov/arpir/index.cfm/viewDoc?accession=D197226378 .
23 24 25 26 27 28 29	DOE/RL-96-68, 2007, Hanford Analytical Services Quality Assurance Requirements Documents (HASQARD), Rev. 3, Volume 1, Administrative Requirements; Volume 2, Sampling Technical Requirements; Volume 3, Field Analytical Technical Requirements; and Volume 4, Laboratory Technical Requirements, U.S. Department of Energy, Richland Operations Office, Richland, Washington. Available at: http://www.hanford.gov/files.cfm/HASQARD_Vol_2.pdf . http://www.hanford.gov/files.cfm/HASQARD_Vol_3.pdf . http://www.hanford.gov/files.cfm/HASQARD_Vol_4.pdf .
31 32 33	DOE/RL-2003-04, 2005, Sampling and Analysis Plan for the 200-PO-1 Groundwater Operable Unit, Rev. 1, U.S. Department of Energy, Richland Operations Office, Richland, Washington. Available at: http://pdw.hanford.gov/arpir/index.cfm/viewDoc?accession=DA01974685 .
34 35 36 37	DOE/RL-2007-31, 2008, Remedial Investigation/Feasibility Study Work Plan for the 200-PO-1 Groundwater Operable Unit, Rev. 0, U.S. Department of Energy, Richland Operations Office, Richland, Washington. Available at: http://pdw.hanford.gov/arpir/index.cfm/viewDoc?accession=DA07159571.

1 2 3 4	DOE/RL-2008-66, 2009, <i>Hanford Site Groundwater Monitoring for Fiscal Year 2008</i> , Rev. 0, U.S. Department of Energy, Richland Operations Office, Richland, Washington. Available at: http://pdw.hanford.gov/arpir/index.cfm/viewDoc?accession=0905131281 . http://pdw.hanford.gov/arpir/index.cfm/viewDoc?accession=0905131282 .
5 6 7	DOE/RL-2010-11, 2010, Hanford Site Groundwater Monitoring and Performance Report for 2009: Volumes 1 & 2, Rev. 1, U.S. Department of Energy, Richland Operations Office, Richland, Washington. Available at: http://pdw.hanford.gov/arpir/index.cfm/viewDoc?accession=0084237
8 9 10	DOE/RL-2011-01, 2011, <i>Hanford Site Groundwater Monitoring Report for 2010</i> , Rev. 0, U.S. Department of Energy, Richland Operations Office, Richland, Washington. Available at: http://www.hanford.gov/c.cfm/sgrp/GWRep10/html/start10.htm .
11 12 13	DOE/RL-2011-118, 2012, <i>Hanford Site Groundwater Monitoring for 2011</i> , Rev. 0, U.S. Department of Energy, Richland Operations Office, Richland, Washington. Available at: http://pdw.hanford.gov/arpir/index.cfm/viewDoc?accession=0091795 .
14 15 16	DOE/RL-2012-59, 2013, Sampling and Analysis Plan for Groundwater Surveillance Monitoring on the Hanford Site, Rev. 0, U.S. Department of Energy, Richland Operations Office, Richland, Washington.
17 18 19	DOE/RL-2013-22, 2013, <i>Hanford Site Groundwater Monitoring Report for 2012</i> , Rev. 0, U.S. Department of Energy, Richland Operations Office, Richland, Washington. Available at: http://pdw.hanford.gov/arpir/index.cfm/viewDoc?accession=0087974 .
20 21 22 23	Ecology, EPA, and DOE, 1989, <i>Hanford Federal Facility Agreement and Consent Order</i> , 2 vols., Washington State Department of Ecology, U.S. Environmental Protection Agency, and U.S. Department of Energy, Olympia, Washington. Available at: http://www.hanford.gov/?page=81 .
24 25 26	EPA/240/B-06/002, 2006, <i>Data Quality Assessment: A Reviewer's Guide</i> , EPA QA/G-9R, Office of Environmental Information, U.S. Environmental Protection Agency, Washington, D.C. Available at: http://www.epa.gov/quality/qs-docs/g9r-final.pdf .
27 28 29	EPA/240/B-06/003, 2006, <i>Data Quality Assessment: Statistical Methods for Practitioners</i> , EPA QA/G-9S, Office of Environmental Information, U.S. Environmental Protection Agency, Washington, D.C. Available at: http://www.epa.gov/quality/qs-docs/g9s-final.pdf .
30 31 32	EPA/240/R-02/004, 2002, Guidance on Environmental Data Verification and Data Validation, EPA QA/G-8, Office of Environmental Information, U.S. Environmental Protection Agency, Washington, D.C. Available at: http://www.epa.gov/quality/qs-docs/g8-final.pdf .
33 34 35 36	EPA 540-R-08-005, 2009, Guidance for Labeling Externally Validated Laboratory Analytical Data for Superfund Use, OSWER No. 9200.1-85, Office of Solid Waste and Emergency Response, U.S. Environmental Protection Agency, Washington, D.C. Available at: http://www.epa.gov/superfund/policy/pdfs/EPA-540-R-08-005.pdf .
37 38 39 40 41	EPA-540-R-11-016, 2011, <i>National Functional Guidelines for Chlorinated Dibenzo-p-Dioxins (CDDs)</i> and Chlorinated Dibenzofurans (CDFs) Data Review, USEPA Contract Laboratory Program, OSWER 9240.1-53, Office of Superfund Remediation and Technology Innovation, U.S. Environmental Protection Agency, Washington, D.C. Available at: http://www.epa.gov/superfund/programs/clp/download/dlm/dlm22nfg.pdf .

1 2 3	EPA-600/4-79-020, 1983, <i>Methods for Chemical Analysis of Water and Wastes</i> , Environmental Monitoring and Support Laboratory, U.S. Environmental Protection Agency, Cincinnati, Ohio. Available at: http://pdw.hanford.gov/arpir/index.cfm/viewDoc?accession=D196019611 .
4 5 6 7	EPA-600/R-94/111, 1994, <i>Methods for the Determination of Metals in Environmental Samples, Supplement I</i> , Environmental Monitoring Systems Laboratory, U.S. Environmental Protection Agency, Cincinnati, Ohio. Available at: http://nepis.epa.gov/Exe/ZyPURL.cgi?Dockey=300036HL.txt .
8	Hanford Environmental Information System, Hanford Site database, Richland, Washington.
9 10 11	PNNL-15315, 2006, RCRA Assessment Plan for Single-Shell Tank Waste Management Area A-AX at the Hanford Site, Pacific Northwest National Laboratory, Richland, Washington. Available at: http://www.pnl.gov/main/publications/external/technical_reports/PNNL-15315.pdf .
12 13	RPP-PLAN-26534, 2005, Integrated Disposal Facility Operational Monitoring Plan to Meet DOE Order 435.1, Rev. 0, CH2M HILL Hanford Group, Inc., Richland, Washington.
14 15	Resource Conservation and Recovery Act of 1976, 42 USC 6901, et seq. Available at: http://www2.epa.gov/laws-regulations/summary-resource-conservation-and-recovery-act .
16	Safe Drinking Water Act of 1974, 42 USC 300, et seq. Available at: http://www.epa.gov/ogwdw/sdwa/.
17 18	SGW-34011, 2007, Data Quality Objective Summary Report Supporting the 200-PO-1 Groundwater Operable Unit, Rev. 0, Fluor Hanford, Inc., Richland, Washington.
19 20 21	SGW-41557, 2010, 200-PO-1 Groundwater Operable Unit Data Quality Assessment, Rev. 0, CH2M HILL Plateau Remediation Company, Richland, Washington. Available at: http://pdw.hanford.gov/arpir/index.cfm/viewDoc?accession=0084386 .
22 23 24 25	SW-846, 2007, Test Methods for Evaluation Solid Waste: Physical/Chemical Methods, Third Edition; Final Update IV-B, as amended, Office of Solid Waste and Emergency Response, U.S Environmental Protection Agency, Washington, D.C. Available at: www.epa.gov/SW-846/main.htm .
26 27 28 29 30 31	TPA-CN-205, 2008, Change Notice for Modifying Approved Documents/Workplans in Accordance with the Tri-Party Agreement Action Plan, Section 9.0, Documentation and Records: DOE/RL-2003-4, Revision 1, Sampling and Analysis Plan for the 200-PO-1 Operable Unit, dated June 18, U.S. Department of Energy, Richland Operations Office, and Washington State Department of Ecology, Richland, Washington. Available at: http://pdw.hanford.gov/arpir/index.cfm/viewDoc?accession=0905200814 .
32 33 34 35 36	USEPA-540-R-08-01, 2008, <i>National Functional Guidelines for Superfund Organic Methods Data Review</i> , USEPA Contract Laboratory Program, OSWER 9240.1-48, Office of Superfund Remediation and Technology Innovation, U.S. Environmental Protection Agency, Washington, D.C. Available at: http://www.epa.gov/superfund/programs/clp/download/somnfg.pdf .
37 38 39 40	USEPA-540-R-10-011, 2010, National Functional Guidelines for Inorganic Superfund Data Review, USEPA Contract Laboratory Program, OSWER 9240.1-51, Office of Superfund Remediation and Technology Innovation, U.S. Environmental Protection Agency, Washington, D.C. Available at: http://www.epa.gov/superfund/programs/clp/download/ism/ism1nfg.pdf .

SGW-56759, REV. 0

1	WAC 173-201A, "Water Quality Standards for Surface Waters of the State of Washington,"
2	Washington Administrative Code, Olympia, Washington. Available at:
3	http://apps.leg.wa.gov/WAC/default.aspx?cite=173-201A.
4	WAC 173-340-720, "Model Toxic Control Act—Cleanup," "Ground Water Cleanup Standards,"
5	Washington Administrative Code, Olympia, Washington. Available at:
6	http://apps.leg.wa.gov/WAC/default.aspx?cite=173-340-720.
7	WAC 173-340-730, "Model Toxics Control Act—Cleanup," "Surface Water Cleanup Standards,"
8	Washington Administrative Code, Olympia, Washington. Available at:
9	http://apps.leg.wa.gov/WAC/default.aspx?cite=173-340-730.
10	WAC 246-290-310, "Group A Public Water Supplies," "Maximum Contaminant Levels (MCLs) and
11	Maximum Residual Disinfectant Levels (MRDLs)," Washington Administrative Code, Olympia,
12	Washington. Available at: http://apps.leg.wa.gov/WAC/default.aspx?cite=246-290-310 .

1	Appendix A
2	200-PO-1 Groundwater Operable Unit
3	Data Quality Evaluation Results

This page intentionally left blank.

2

2	A1	Introd	luction	A-1
3		A1.1	Guidance Documents	A-1
4	A2	Holdi	ng Times	A-2
5		A2.1	Inorganics	A-2
6		A2.2	General Chemistry	A-2
7		A2.3	Radionuclides	A-2
8		A2.4	Organics	A-3
9	A3	Blank	Contamination	A-3
10	A4	Labor	atory Precision and Accuracy	A-5
11		A4.1	Laboratory Control Samples	A-5
12		A4.2	Matrix Spike/Matrix Spike Duplicate Samples	A-6
13		A4.3	Surrogate Spike Recovery	A-7
14	A5	Refer	ences	A-8
15			Tables	
16	Table	e A-1.	Summary of Sample Results Qualified Because of Holding Time Exceedances	A-9
17 18	Table	e A-2.	Summary of Blank Actions for Metals, General Chemistry, and Low/Medium Organic Analyses	A-4
19 20	Table	e A-3.	Summary of 2008 Sample Results Qualified Because of Method Blank, Preparation Blank or Field Blank Contamination	A-15
21 22	Table	e A-4.	Summary of 2009 Sample Results Qualified Because of Method Blank, Preparation Blank or Field Blank Contamination	A-18
23 24	Table	e A-5.	Summary of 2010 Sample Results Qualified Because of Method Blank, Preparation Blank or Field Blank Contamination	A-20
25 26	Table	e A-6.	Summary of 2011 Sample Results Qualified Because of Method Blank, Preparation Blank or Field Blank Contamination	A-25
27 28	Table	e A-7.	Summary of 2012 Sample Results Qualified Because of Method Blank, Preparation Blank or Field Blank Contamination	
29 30	Table	e A-8.	Summary of 2013 Sample Results Qualified Because of Method Blank, Preparation Blank or Field Blank Contamination	A-29
31	Table	A-9.	Summary of LCS Actions for Metals	A-5
32 33	Table	e A-10.	Summary of 2008 Sample Results Qualified Because Laboratory Control Samples Did Not Meet QC Acceptance Criteria	A-30
34 35	Table	e A-11.	Summary of 2009 Sample Results Qualified Because Laboratory Control Samples Did Not Meet QC Acceptance Criteria	A-31
36 37	Table	e A-12.	Summary of 2010 Sample Results Qualified Because Laboratory Control Samples Did Not Meet QC Acceptance Criteria	A-32

SGW-56759, REV. 0

1 2	Table A-13.	Summary of 2011 Sample Results Qualified Because Laboratory Control Samples Did Not Meet QC Acceptance Criteria	A-33
3 4	Table A-14.	Summary of 2012 Sample Results Qualified Because Laboratory Control Samples Did Not Meet QC Acceptance Criteria	A-34
5 6	Table A-15.	Summary of 2013 Sample Results Qualified Because Laboratory Control Samples Did Not Meet QC Acceptance Criteria	A-35
7	Table A-16.	Summary of MS/MSD Actions for Metals and Cyanide	A-6
8 9	Table A-17.	Summary of 2008 Sample Results Qualified Because MS/MSD Recoveries/RPDs Did Not Meet QC Acceptance Criteria	A-36
10 11	Table A-18.	Summary of 2009 Sample Results Qualified Because MS/MSD Recoveries/RPDs Did Not Meet QC Acceptance Criteria	A-39
12 13	Table A-19.	Summary of 2010 Sample Results Qualified Because MS/MSD Recoveries/RPDs Did Not Meet QC Acceptance Criteria	A-40
14 15	Table A-20.	Summary of 2012 Sample Results Qualified Because MS/MSD Recoveries/RPDs Did Not Meet QC Acceptance Criteria	A-42
16 17	Table A-21.	Summary of 2008 Sample Results Qualified Because MS/MSD Recoveries/RPDs Did Not Meet QC Acceptance Criteria	A-44
18	Table A-22.	Summary of Surrogate Spike Recovery Actions for Organic Analyses	A-7
19 20	Table A-23.	Summary of 2008 Sample Results Qualified Because Surrogate Recoveries Did Not Meet QC Acceptance Criteria	A-46
21 22	Table A-24.	Summary of 2009 Sample Results Qualified Because Surrogate Recoveries Did Not Meet QC Acceptance Criteria	A-47
23 24	Table A-25.	Summary of 2010 Sample Results Qualified Because Surrogate Recoveries Did Not Meet QC Acceptance Criteria	A-48
25 26	Table A-26.	Summary of 2012 Sample Results Qualified Because Surrogate Recoveries Did Not Meet QC Acceptance Criteria	A-51
27			

28

A-iv

1 Terms

AES atomic emission spectrometry

DQA data quality assessment

ICP inductively coupled plasma

ID identification

HEIS Hanford Environmental Information System

LCS laboratory control sample

MDL method detection limit

MS matrix spike

MSD matrix spike duplicate

OU operable unit

PQL practical quantification limit

QC quality control

RPD relative percent difference

SVOC semivolatile organic compound

VOC volatile organic compound

This page intentionally left blank.

A 200-PO-1 Groundwater Operable Unit 1 **Data Quality Evaluation Results** 2 A1 Introduction 3 4 The data quality evaluation process is an analyte- and sample-specific process that extends the 5 evaluation of data quality assessment (DQA), as described in Chapter 4 in the main text discussion of this report. The main focus of data quality review is to determine the data quality in terms of accomplishing 6 7 the measurement of quality objectives. Data quality review is generally performed by person(s) 8 independent of the activity that is being evaluated. 9 A formal data validation effort was not performed for the analytical data included in this DQA report. 10 However, a formal validation report was submitted with the original DQA report submitted for the 200-PO-1 Groundwater Operable Unit (OU) (SGW-41557, 200-PO-1 Groundwater Operable Unit Data 11 *Quality Assessment*). Hardcopy data validation reports were not requested from the contracted 12 13 laboratories. Instead, a low-level data quality review process was performed to evaluate the quality of the 14 data set. This process is similar to the Stage 2A verification and validation described in 15 EPA 540-R-08-005, Guidance for Labeling Externally Validated Laboratory Analytical Data for 16 Superfund Use. Each laboratory electronically submits the following sample-related quality control (OC) 17 information for each sample delivery group: 18 Dates and times of analysis 19 • Method blank or preparation blank results 20 Surrogate recoveries 21 Deuterated monitoring compound recoveries 22 Laboratory control sample (LCS) recoveries 23 Duplicate analyses relative percent difference (RPD) results 24 Matrix spike (MS) and matrix spike duplicate (MSD) recoveries and RPD results A1.1 Guidance Documents 25 26 The following guidance documents were used for the data quality evaluation process: 27 EPA/240/R-02/004, Guidance on Environmental Data Verification and Data Validation 28 (EPA QA/G-8) 29 EPA 540-R-08-005, Guidance for Labeling Externally Validated Laboratory Analytical Data for 30 Superfund Use USEPA-540-R-08-01, National Functional Guidelines for Superfund Organic Methods Data Review 31 32 USEPA-540-R-10-011, National Functional Guidelines for Inorganic Superfund Data Review 33 EPA-540-R-11-016, National Functional Guidelines for Chlorinated Dibenzo-p-Dioxins (CDDs) and 34 Chlorinated Dibenzofurans (CDFs) Data Review

The following sections summarize the data quality evaluation activities that were performed for the

groundwater data set included in the DQA for the 200-PO-1 Groundwater OU.

35

A2 Holding Times

- 2 Holding times are defined as the period of time from sample collection to sample analysis or extraction,
- 3 and the period of time from sample extraction to sample analysis. Holding times are calculated from the
- 4 date of sample collection, as recorded on the chain-of-custody form, to determine the validity of the
- 5 results. The following subsections describe the holding-time requirements for the analytical methods
- 6 evaluated for the 200-BP-5 Groundwater OU DQA report.
- 7 Sample results requiring qualification because holding-time requirements were not achieved are
- 8 summarized in Table A-1. Table A-1 shows the analyte name, the sample identification (ID), the value
- 9 reported, units, laboratory qualifier, validation qualifier, method name, and the reason why the sample
- 10 result was qualified.

1

11 A2.1 Inorganics

- 12 The holding-time requirements for metals are as follows:
- The holding-time requirements for inductively coupled plasma (ICP) and ICP/mass spectrometry metals are analysis within 180 days of sample collection for both soil and water samples.
- Mercury requires analysis within 28 days of sample collection for both soil and water samples.
- Preservation of soil samples for mercury analysis requires chilling to $4(\pm 2)$ °C. Preservation of water
- samples for metals analysis, including mercury, is acidification with nitric acid to pH <2 and chilling
- 18 to $4(\pm 2)^{\circ}$ C.
- 19 All groundwater samples were properly preserved.

20 A2.2 General Chemistry

- 21 The holding-time requirements for general chemistry parameters are as follows:
- All anions except nitrate, nitrite, and phosphate: Analysis within 28 days of sample collection.
- Nitrate, nitrite, and phosphate: Analysis within 48 hours of collection for water samples.
- Alkalinity: Analysis within 14 days of sample collection.
- Cyanide: Analysis within 14 days of sample collection for water samples.
- Total carbon and total inorganic carbon: 28 days for water samples.
- Sample preservation for anions and alkalinity requires chilling the groundwater to $4(\pm 2)^{\circ}$ C. Cyanide
- 28 requires preservation of water samples with sodium hydroxide to pH >12 and chilling to $4(\pm 2)$ °C. Total
- 29 carbon and total inorganic carbon requires preservation with sulfuric acid to pH <2 (water matrix only)
- and chilling to $4(\pm 2)^{\circ}$ C (water). All groundwater samples were properly preserved.

31 A2.3 Radionuclides

- 32 The maximum holding time for radiochemical analysis is 180 days for both soil and water samples.
- 33 Sample preservation for water samples requires acid preservation with nitric acid to pH less than 2.
- 34 There are no specific preservation requirements for radiochemical soil analysis.
- 35 All samples were properly preserved and analyzed within the prescribed holding times.

A2.4 Organics

1

11

- 2 The holding times and preservation requirements for volatile organic compounds (VOCs) and
- 3 semivolatile organic compounds (SVOCs) are as follows:
- **VOCs (water):** Acidify with hydrochloric acid or sulfuric acid to pH <2, cool to $4(\pm 2)$ °C, and
- analyze within 14 days of collection; if samples are not acidified but are cooled to $4(\pm 2)^{\circ}$ C, analyze
- 6 within 7 days of collection.
- SVOCs, pesticides, polychlorinated biphenyls, and herbicides (water): Cool to 4(±2)°C, and extract within 7 days of collection. Analysis within 40 days from extraction.
- **Dioxins and furans (water):** Cool to $4(\pm 2)^{\circ}$ C; no holding time for extraction or analysis.
- 10 All groundwater samples were properly preserved.

A3 Blank Contamination

- 12 Section 6.1 in the main text discussion provides a discussion of analytical performance requirements for
- laboratory blanks. Actions taken on sample results that report laboratory or field blank contamination is
- 14 provided in Table A-2.
- 15 Sample results requiring qualification because of laboratory contamination are summarized in Tables A-3
- through A-8 for samples collected between 2008 and 2013. These tables show the analyte name, the
- sample ID, the value reported, units, laboratory qualifier, validation qualifier, method name, and the
- reason why the sample result was qualified.
- During 2008, 143 metals results were rejected because of the presence of laboratory contamination
- 20 (sample results were flagged with a "C" laboratory qualifier). In this case, the reported sample results
- were less than 10 times the preparation blank concentration. However, the laboratory did not assign these
- 22 results with a "B" laboratory flag, which indicates that the reported concentration is greater than the
- 23 method detection limit (MDL) but less than the practical quantification limit (PQL). Additionally, the
- 24 electronic deliverable did not report a PQL. These results are considered unusable because the "B" flag
- 25 was not appropriately assigned and the POL was not reported; therefore, the results could not be qualified
- using the blank actions summarized in Table A-2.
- 27 The POL was not included in the electronic deliverable for a number of sample results reported between
- 28 2008 and 2013. When this occurred, the sample results could not be flagged using the blank actions listed
- above (e.g., report PQL with a "U"). Instead, the reason listed in Tables A-3 through A-8 indicates that
- 30 the PQL was not provided by the laboratory and the result was flagged with a "U" at the reported
- 31 concentration (instead of the PQL).

Table A-2. Summary of Blank Actions for Metals, General Chemistry, and Low/Medium Organic Analyses

Blank Type	Blank Result	Sample Result	Action for Samples
	Low/M	ledium Organic Analyses	
Laboratory, storage,	Detects	Not detected	No qualification
field, trip	<pql< td=""><td><pql< td=""><td>Report PQL with a "U"</td></pql<></td></pql<>	<pql< td=""><td>Report PQL with a "U"</td></pql<>	Report PQL with a "U"
		≥PQL	Use professional judgment
	>PQL	<pql< td=""><td>Report PQL with a "U"</td></pql<>	Report PQL with a "U"
		≥PQL and <blank concentration<="" td=""><td>Report the blank concentration for the sample with a "U" or qualify the data as unusable with an "R"</td></blank>	Report the blank concentration for the sample with a "U" or qualify the data as unusable with an "R"
	=PQL	<pql< td=""><td>Report PQL with a "U"</td></pql<>	Report PQL with a "U"
		≥PQL	Use professional judgment
	Gross contamination	Detects	Qualify results as unusable with an "R"
	Metals	s and General Chemistry	
Preparation blank	>PQL	≥MDL but ≤PQL	Report PQL with a "U"
		≥PQL and <10 times the blank concentration	Use professional judgment to qualify results as unusable with an "R" or estimated high with a "J+"
		>10 times the blank result	No qualification
	>MDL but ≤PQL	Not detected	No qualification
		≥MDL but ≤PQL	Report PQL with a "U"
		>PQL	Use professional judgment

Note: The PQL is designated as the required detection limit in the HEIS database. Additionally, the MDL is designated as the reporting limit in the HEIS database.

HEIS = Hanford Environmental Information System

MDL = method detection limit

PQL = practical quantitation limit

A4 Laboratory Precision and Accuracy

- 2 Sections 6.2 and 6.3 in the main text discussion discuss laboratory precision and accuracy analytical
- 3 performance requirements. Laboratory precision and accuracy are evaluated by the performance of LCSs,
- 4 MSs/MSDs, and surrogate spike compounds.
- 5 Precision is the degree of agreement among repeated measurements of the same characteristic. It may be
- 6 determined by calculating the standard deviation, or RPD, among samples taken from the same place at
- 7 the same time. Accuracy measures how close the results are to a true or expected value, which can be
- 8 determined by comparing the analysis of a standard or reference sample to its actual value. Three types of
- 9 QC are used to assess accuracy.

1

10 A4.1 Laboratory Control Samples

- 11 The LCS serves as to monitor of the overall performance of each step during the analysis, including
- sample preparation. Actions taken on sample results that report LCS recoveries outside of QC limits are
- provided in Table A-9. The LCSs are not reported for organic analyses.

Table A-9. Summary of LCS Actions for Metals

LCS Criteria	Action			
Metals ICP/AES Analysis				
Aqueous/water: All metals except antimony and silver –%R 40-69	Qualify results that are ≥MDL as estimated low (J-) or qualify nondetects as estimated (UJ)			
Silver and antimony: %R 20-49				
Aqueous/water: All metals except antimony and silver $-\%R > 130\%$	Qualify results that are ≥MDL as estimated high (J+)			
Silver and antimony: %R >150				
Aqueous/water: All metals except antimony and silver – %R <40%	Qualify results that are ≥MDL as estimated low (J-) or qualify nondetects as unusable (R)			
Silver and antimony: %R <20				
Aqueous/water: All metals except antimony and silver $-\%$ R > 150	Qualify all results as unusable (R)			
Silver and antimony: %R >170				
Metals ICP/Mas	s Spectrometry Analysis			
Aqueous/water: %R 40-69	Qualify results that are ≥MDL as estimated low (J-) or qualify nondetects as estimated (UJ)			
Aqueous/water: %R >130%	Qualify results that are ≥MDL as estimated high (J+)			
Aqueous/water: %R <40%	Qualify results that are ≥MDL as estimated low (J-) or qualify nondetects as unusable (R)			
Aqueous/water: %R >150	Qualify all results as unusable (R)			
	CS = laboratory control sample ADL = method detection limit			
ICP = inductively coupled plasma N	TDL = method detection limit			

- 1 Sample results requiring qualification due to LCS results are summarized in Tables A-10 through A-15
- 2 for samples collected between 2008 and 2013. These tables show the analyte name, sample ID, value
- 3 reported, units, laboratory qualifier, validation qualifier, method name, and reason why the sample result
- 4 was qualified. Although guidance is not published for the qualification of radiological analyses,
- 5 the actions listed for ICP/mass spectrometry results were applied to radiological results.

6 A4.2 Matrix Spike/Matrix Spike Duplicate Samples

- 7 Laboratory spike recovery is also used as a measure of laboratory accuracy and precision. Actions taken
- 8 on sample results that report MS/MSD recoveries or RPD results outside of QC limits are provided in
- 9 Table A-16.

Table A-16. Summary of MS/MSD Actions for Metals and Cyanide

MS/MSD Criteria	Action
Metals ICP/AES, ICP/Mass Spectron	netry, Mercury, and Cyanide Analysis
Matrix spike %R <30% No post-digestion spike performed (e.g., not required for Ag)	Qualify results that are ≥MDL as estimated low (J-) and affected nondetects as unusable (R)
Matrix spike %R 30-74% No post-digestion spike performed (e.g., not required for Ag)	Qualify results that are ≥MDL as estimated low (J-) and nondetects as estimated (UJ)
Matrix spike %R >125% No post-digestion spike performed (e.g., not required for Ag)	Qualify results that are ≥MDL as estimated high (J+) and nondetects are not qualified
Both parent and duplicate sample >5 times the PQL and the RPD >20%	Qualify results ≥MDL that professional judgment determines to be affected as estimated (J) and nondetects as estimated (UJ)
Parent or duplicate sample ≤5 times the PQL (including nondetects) and the absolute difference between parent and duplicate >PQL	Qualify results ≥MDL that professional judgment determines to be affected as estimated (J) and nondetects as estimated (UJ)
AES = atomic emission spectrometry MS	D = matrix spike duplicate
ICP = inductively coupled plasma PQ	L = practical quantitation limit
MDL = method detection limit RP	D = relative percent difference

- 10 Sample results requiring qualification because MS/MSD results are outside of QC limits are summarized
- in Tables A-17 through A-21 for samples collected between 2008 and 2013. These tables show the
- analyte name, the sample ID, the value reported, units, laboratory qualifier, validation qualifier, method
- 13 name, and the reason why the sample result was qualified. Although guidance is not published for the
- qualification of radiological analyses, the actions listed for metals results were applied to radiological
- 15 results. No samples collected during 2011 required qualification as a result of MS/MSD recoveries or
- 16 RPD results.
- 17 Organic sample results were not qualified based on MS and MSD data alone. The data reviewer may use
- 18 MS and MSD results in conjunction with other QC criteria to determine the need for some qualification of
- 19 the data. However, no additional qualification was performed.

1 A4.3 Surrogate Spike Recovery

- 2 Laboratory spike recovery is also used as a measure of laboratory accuracy and precision. Actions taken
- 3 on sample results that report surrogate spike recoveries outside QC limits are provided in Table A-22.
- 4 The LCSs are not reported for organic analyses. Surrogate spike recoveries are not reported with
- 5 radiological, metal, or general chemistry analyses.
- 6 Sample results requiring qualification because surrogate spike recoveries are outside QC limits are
- 7 summarized in Tables A-23 through A-26 for samples collected between 2008 and 2013. These tables
- 8 show the analyte name, the sample ID, the value reported, units, laboratory qualifier, validation qualifier,
- 9 method name, and the reason why the sample result was qualified. No samples collected during 2011 or
- 10 2013 required qualification as a result of surrogate spike recoveries.

Table A-22. Summary of Surrogate Spike Recovery Actions for Organic Analyses

MS/MSD Criteria	Action			
Low/Medium Volatiles Analyses				
$%R \ge upper laboratory-specific acceptance limit$	Qualify results that are ≥MDL as estimated (J) and nondetects are not qualified			
%R < lower laboratory-specific acceptance limit	Qualify results that are ≥MDL as estimated (J) and nondetects as estimated (UJ)			
%R <20	Qualify results that are ≥MDL as estimated (J) and affected nondetects as unusable (R)			
	Semivolatile Analyses			
%R ≥ upper laboratory-specific acceptance limit	Qualify results that are ≥MDL as estimated (J) and nondetects are not qualified			
%R < lower laboratory-specific acceptance limit	Qualify results that are ≥MDL as estimated (J) and nondetects as estimated (UJ) or as unusable (R)			
	Pesticide and Aroclor Analyses			
%R->200	Qualify results that are ≥MDL as estimated (J) and nondetects use professional judgment			
%R- 150-200	Qualify results that are ≥MDL as estimated (J) and nondetects are not qualified			
%R- 30-150	No qualification required			
%R- 10-30	Qualify results that are ≥MDL as estimated (J) and affected nondetects as unusable (R)			

MDL = method detection limit

MS = matrix spike

MSD = matrix spike duplicate

1	A5 References
2 3 4	EPA/240/R-02/004, 2002, Guidance on Environmental Data Verification and Data Validation, EPA QA/G-8, Office of Environmental Information, U.S. Environmental Protection Agency, Washington, D.C. Available at: http://www.epa.gov/quality/qs-docs/g8-final.pdf .
5 6 7 8	EPA 540-R-08-005, 2009, Guidance for Labeling Externally Validated Laboratory Analytical Data for Superfund Use, OSWER No. 9200.1-85, Office of Solid Waste and Emergency Response, U.S. Environmental Protection Agency, Washington, D.C. Available at: http://www.epa.gov/superfund/policy/pdfs/EPA-540-R-08-005.pdf .
9 10 11 12 13	EPA-540-R-11-016, 2011, National Functional Guidelines for Chlorinated Dibenzo-p-Dioxins (CDDs) and Chlorinated Dibenzofurans (CDFs) Data Review, USEPA Contract Laboratory Program, OSWER 9240.1-53, Office of Superfund Remediation and Technology Innovation, U.S. Environmental Protection Agency, Washington, D.C. Available at: http://www.epa.gov/superfund/programs/clp/download/dlm/dlm22nfg.pdf .
14	Hanford Environmental Information System, Hanford Site database, Richland, Washington.
15 16 17	SGW-41557, 2010, 200-PO-1 Groundwater Operable Unit Data Quality Assessment, Rev. 0, CH2M HILL Plateau Remediation Company, Richland, Washington. Available at: http://pdw.hanford.gov/arpir/index.cfm/viewDoc?accession=0084386 .
18 19 20 21 22	USEPA-540-R-08-01, 2008, <i>National Functional Guidelines for Superfund Organic Methods Data Review</i> , USEPA Contract Laboratory Program, OSWER 9240.1-48, Office of Superfund Remediation and Technology Innovation, U.S. Environmental Protection Agency, Washington, D.C. Available at: http://www.epa.gov/superfund/programs/clp/download/somnfg.pdf .
23 24 25 26	USEPA-540-R-10-011, 2010, <i>National Functional Guidelines for Inorganic Superfund Data Review</i> , USEPA Contract Laboratory Program, OSWER 9240.1-51, Office of Superfund Remediation and Technology Innovation, U.S. Environmental Protection Agency, Washington, D.C. Available at: http://www.epa.gov/superfund/programs/clp/download/ism/ism1nfg.pdf .

Table A-1. Summary of Sample Results Qualified Because of Holding Times Exceedances

				# of Days to	Holding Time					Validation	
Well Name	Sample ID	Collection Date	Analysis Date	Analysis	Requirement (days)	Analyte Name	Value Reported	Units	Lab Qualifier	Qualifier	Reason
699-22-35	B2KL33	4/16/2012	5/4/2012	18	7	1,1,1-Trichloroethane	1.5	ug/L	J	J	> 2X holding time requirement
699-23-34B	B2KL53	4/16/2012	5/8/2012	22	7	1,1,1-Trichloroethane	1	ug/L	U	R	> 2X holding time requirement
699-24-33	B2KL63	4/16/2012	5/4/2012	18	7	1,1,1-Trichloroethane	1	ug/L	U	R	> 2X holding time requirement
699-24-34A	B2KL73	4/16/2012	5/4/2012	18	7	1,1,1-Trichloroethane	1.4	ug/L	J	j	> 2X holding time requirement
699-24-34B	B2KL87	4/16/2012	5/4/2012	18	7	1,1,1-Trichloroethane	1.4	ug/L	J	J	> 2X holding time requirement
699-24-35	B2KLB0	4/17/2012	5/4/2012	17	7	1,1,1-Trichloroethane	1.5	ug/L	J	J	> 2X holding time requirement
699-26-35A	B2KLC0	4/17/2012	5/4/2012	17	7	1,1,1-Trichloroethane	1.3	ug/L	J	J	> 2X holding time requirement
699-22-35	B2KL33	4/16/2012	5/4/2012	18	7	1,1,2-Trichloroethane	1	ug/L	U	R	> 2X holding time requirement
699-23-34B	B2KL53	4/16/2012	5/8/2012	22	7	1,1,2-Trichloroethane	1	ug/L	U	R	> 2X holding time requirement
699-24-33	B2KL63	4/16/2012	5/4/2012	18	7	1,1,2-Trichloroethane	1	ug/L	U	R	> 2X holding time requirement
699-24-34A	B2KL73	4/16/2012	5/4/2012	18	7	1,1,2-Trichloroethane	1	ug/L	U	R	> 2X holding time requirement
699-24-34B	B2KL87	4/16/2012	5/4/2012	18	7	1,1,2-Trichloroethane	1	ug/L	U	R	> 2X holding time requirement
699-24-35	B2KLB0	4/17/2012	5/4/2012	17	7	1,1,2-Trichloroethane	1	ug/L	U	R	> 2X holding time requirement
699-26-35A	B2KLC0	4/17/2012	5/4/2012	17	7	1,1,2-Trichloroethane	1	ug/L	U	R	> 2X holding time requirement
699-22-35	B2KL33	4/16/2012	5/4/2012	18	7	1,1-Dichloroethane	1	ug/L	UTX	R	> 2X holding time requirement
699-23-34B	B2KL53	4/16/2012	5/8/2012	22	7	1,1-Dichloroethane	1	ug/L	UTX	R	> 2X holding time requirement
699-24-33	B2KL63	4/16/2012	5/4/2012	18	7	1,1-Dichloroethane	1	ug/L	UTX	R	> 2X holding time requirement
699-24-34A	B2KL73	4/16/2012	5/4/2012	18	7	1,1-Dichloroethane	1	ug/L	UTX	R	> 2X holding time requirement
699-24-34B	B2KL87	4/16/2012	5/4/2012	18	7	1,1-Dichloroethane	1	ug/L	UTX	R	> 2X holding time requirement
699-24-35	B2KLB0	4/17/2012	5/4/2012	17	7	1,1-Dichloroethane	1	ug/L	UTX	R	> 2X holding time requirement
699-26-35A	B2KLC0	4/17/2012	5/4/2012	17	7	1,1-Dichloroethane	1	ug/L	UTX	R	> 2X holding time requirement
699-22-35	B2KL33	4/16/2012	5/4/2012	18	7	1,1-Dichloroethene	1	ug/L	U	R	> 2X holding time requirement
699-23-34B	B2KL53	4/16/2012	5/8/2012	22	7	1,1-Dichloroethene	1	ug/L	U	R	> 2X holding time requirement
699-24-33	B2KL63	4/16/2012	5/4/2012	18	7	1,1-Dichloroethene	1	ug/L	U	R	> 2X holding time requirement
699-24-34A	B2KL73	4/16/2012	5/4/2012	18	7	1,1-Dichloroethene	1	ug/L	U	R	> 2X holding time requirement
699-24-34B	B2KL87	4/16/2012	5/4/2012	18	7	1,1-Dichloroethene	1	ug/L	U	R	> 2X holding time requirement
699-24-35	B2KLB0	4/17/2012	5/4/2012	17	7	1,1-Dichloroethene	1	ug/L	U	R	> 2X holding time requirement
699-26-35A	B2KLC0	4/17/2012	5/4/2012	17	7	1,1-Dichloroethene	1	ug/L	U	R	> 2X holding time requirement
699-S6-E4K	B230K5	2/16/2010	3/16/2010	28	7	1,2,4-Trichlorobenzene	0.7	ug/L	UTX	R	> 2X holding time requirement
699-22-35	B2KL33	4/16/2012	5/4/2012	18	7	1,2-Dichloroethane	1	ug/L	U	R	> 2X holding time requirement
699-23-34B	B2KL53	4/16/2012	5/8/2012	22	7	1,2-Dichloroethane	1	ug/L	U	R	> 2X holding time requirement
699-24-33	B2KL63	4/16/2012	5/4/2012	18	7	1,2-Dichloroethane	1	ug/L	U	R	> 2X holding time requirement
699-24-34A	B2KL73	4/16/2012	5/4/2012	18	7	1,2-Dichloroethane	1	ug/L	U	R	> 2X holding time requirement
699-24-34B	B2KL87	4/16/2012	5/4/2012	18	7	1,2-Dichloroethane	1	ug/L	U	R	> 2X holding time requirement
699-24-35	B2KLB0	4/17/2012	5/4/2012	17	7	1,2-Dichloroethane	1	ug/L	U	R	> 2X holding time requirement
699-26-35A	B2KLC0	4/17/2012	5/4/2012	17	7	1,2-Dichloroethane	1	ug/L	U	R	> 2X holding time requirement
699-22-35	B2KL33	4/16/2012	5/4/2012	18	7	1,4-Dichlorobenzene	1	ug/L	U	R	> 2X holding time requirement
699-23-34B	B2KL53	4/16/2012	5/8/2012	22	7	1,4-Dichlorobenzene	1	ug/L	U	R	> 2X holding time requirement
699-24-33	B2KL63	4/16/2012	5/4/2012	18	7	1,4-Dichlorobenzene	1	ug/L	U	R	> 2X holding time requirement
699-24-34A	B2KL73	4/16/2012	5/4/2012	18	7	1,4-Dichlorobenzene	1	ug/L	U	R	> 2X holding time requirement
699-24-34B	B2KL87	4/16/2012	5/4/2012	18	7	1,4-Dichlorobenzene	1	ug/L	U	R	> 2X holding time requirement
699-24-35	B2KLB0	4/17/2012	5/4/2012	17	7	1,4-Dichlorobenzene	1	ug/L	U	R	> 2X holding time requirement
699-26-35A	B2KLC0	4/17/2012	5/4/2012	17	7	1,4-Dichlorobenzene	1	ug/L	U	R	> 2X holding time requirement
699-26-35A	B2KLB7	4/17/2012	4/26/2012	9	7	1,4-Dioxane	1	ug/L	U	J	< 2X holding time requirement
699-22-35	B2KL33	4/16/2012	5/4/2012	18	7	1-Butanol	100	ug/L	U	R	> 2X holding time requirement
699-23-34B	B2KL53	4/16/2012	5/8/2012	22	7	1-Butanol	100	ug/L	U	R	> 2X holding time requirement
699-24-33	B2KL63	4/16/2012	5/4/2012	18	7	1-Butanol	100	ug/L	U	R	> 2X holding time requirement
699-24-34A	B2KL73	4/16/2012	5/4/2012	18	7	1-Butanol	100	ug/L	U	R	> 2X holding time requirement
699-24-34B	B2KL87	4/16/2012	5/4/2012	18	7	1-Butanol	100	ug/L	U	R	> 2X holding time requirement
699-24-35	B2KLB0	4/17/2012	5/4/2012	17	7	1-Butanol	100	ug/L	U	R	> 2X holding time requirement
699-26-35A	B2KLC0	4/17/2012	5/4/2012	17	7	1-Butanol	100	ug/L	Ü	R	> 2X holding time requirement
299-E24-16	B24PL0	4/25/2010	5/10/2010	15	7	2,3,4,6-Tetrachlorophenol	2	ug/L	Ü	R	> 2X holding time requirement
699-26-35C	B23BX2	1/19/2010	2/3/2010	15	7	2,3,4,6-Tetrachlorophenol	2	ug/L	U	R	> 2X holding time requirement
299-E24-16	B24PL0	4/25/2010	5/10/2010	15	7	2,4,5-Trichlorophenol	2.2	ug/L	U	R	> 2X holding time requirement
699-26-35C	B23BX2	1/19/2010	2/3/2010	15	7	2,4,5-Trichlorophenol	2.2	ug/L	Ü	R	> 2X holding time requirement
299-E24-16	B24PL0	4/25/2010	5/10/2010	15	7	2,4,6-Trichlorophenol	2.2	ug/L	U	R	> 2X holding time requirement
699-26-35C	B23BX2	1/19/2010	2/3/2010	15	7	2,4,6-Trichlorophenol	2.2	ug/L	U	R	> 2X holding time requirement
000 20 000	02007.2	1, 10, 1010	2,0,2020			_, ,, 0		~D/ -	-		

Table A-1. Summary of Sample Results Qualified Because of Holding Times Exceedances

				" (5 .							
Mall Name	Camarala ID	Callantian Data	Analusia Data	# of Days to	Holding Time	A	Value Benedad	Haika	Lab Ovalities	Validation	D
Well Name 299-E24-16	Sample ID B24PL0	Collection Date 4/25/2010	Analysis Date	Analysis 15	Requirement (days)	Analyte Name	Value Reported 2.1	Units	Lab Qualifier U	Qualifier R	Reason
699-26-35C	B23BX2	1/19/2010	5/10/2010 2/3/2010	15	7	2,4-Dichlorophenol 2,4-Dichlorophenol	2.1	ug/L ug/L	U	R	> 2X holding time requirement > 2X holding time requirement
699-S6-E4K	B230K5	2/16/2010	3/16/2010	28	7	2,4-Dichlorophenol	0.5	ug/L	U	R	> 2X holding time requirement
299-E24-16	B24PL0	4/25/2010	5/10/2010	15	7	2,4-Dimethylphenol	2.1	ug/L	U	R	> 2X holding time requirement
699-26-35C	B23BX2	1/19/2010	2/3/2010	15	7	2,4-Dimethylphenol	2.1	ug/L	U	R	> 2X holding time requirement
299-E24-16	B23BX2 B24PL0	4/25/2010	5/10/2010	15	7	2,4-Dinitrophenol	2.4	ug/L	UN	R	> 2X holding time requirement
699-26-35C	B23BX2	1/19/2010	2/3/2010	15	7	2,4-Dinitrophenol	2.4	ug/L	U	R	> 2X holding time requirement
699-S6-E4K	B230K5	2/16/2010	3/16/2010	28	7	2,4-Dinitrotoluene	0.5	ug/L	U	R	> 2X holding time requirement
299-E24-16	B24PL0	4/25/2010	5/10/2010	15	7	2,4-Dinitrotoldene 2,6-Dichlorophenol	2.1	ug/L	U	R	> 2X holding time requirement
699-26-35C	B23BX2	1/19/2010	2/3/2010	15	7	2,6-Dichlorophenol	2.1	ug/L	U	R	> 2X holding time requirement
699-22-35	B2KL33	4/16/2012	5/4/2012	18	7	2-Butanone	1	ug/L	U	R	> 2X holding time requirement
699-23-34B	B2KL53	4/16/2012	5/8/2012	22	7	2-Butanone	1	ug/L	U	R	> 2X holding time requirement
699-24-33	B2KL63	4/16/2012	5/4/2012	18	7	2-Butanone	1	ug/L	U	R	> 2X holding time requirement
699-24-33 699-24-34A	B2KL73	4/16/2012	5/4/2012	18	7	2-Butanone	1	ug/L	U	R	> 2X holding time requirement
699-24-34B	B2KL87	4/16/2012	5/4/2012	18	7	2-Butanone	1	ug/L	U	R	> 2X holding time requirement
699-24-35	B2KLB0	4/17/2012	5/4/2012	17	7	2-Butanone	1	ug/L	U	R	> 2X holding time requirement
699-26-35A	B2KLC0	4/17/2012	5/4/2012	17	7	2-Butanone	1		U	R	> 2X holding time requirement
	B24PL0			15	7		2.2	ug/L	U	R	
299-E24-16 699-26-35C	B23BX2	4/25/2010 1/19/2010	5/10/2010 2/3/2010	15	7	2-Chlorophenol 2-Chlorophenol	2.2	ug/L	U	R	> 2X holding time requirement
699-26-35C 699-S6-E4K	B23BX2 B230K5			28	7	2-Chlorophenol	0.5	ug/L	UT	R	> 2X holding time requirement
	B230K5 B24PL0	2/16/2010	3/16/2010	15	7		2.2	ug/L	U	R	> 2X holding time requirement
299-E24-16	B23BX2	4/25/2010	5/10/2010	15		2-Methylphenol (cresol, o-)		ug/L	U	5.0	> 2X holding time requirement
699-26-35C		1/19/2010	2/3/2010	28	7	2-Methylphenol (cresol, o-)	2.2	ug/L	U	R	> 2X holding time requirement
699-S6-E4K	B230K5	2/16/2010	3/16/2010			2-Methylphenol (cresol, o-)	0.8	ug/L		R	> 2X holding time requirement
299-E24-16 699-26-35C	B24PL0 B23BX2	4/25/2010	5/10/2010	15 15	7	2-Nitrophenol	2.3	ug/L	U	R R	> 2X holding time requirement
		1/19/2010	2/3/2010		7	2-Nitrophenol	2.3	ug/L			> 2X holding time requirement
699-S6-E4K	B230K5	2/16/2010	3/16/2010	28	7	2-Nitrophenol	0.5	ug/L	U	R R	> 2X holding time requirement
699-S6-E4K	B230K5	2/16/2010	3/16/2010	28	/	2-Picoline	1	ug/L	U	K	> 2X holding time requirement
299-E24-16	B24PL0	4/25/2010	5/10/2010	15	7	3.4.04-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-	2.2		U	R	2V h - Lili 1
299-624-16	BZ4PLU	4/25/2010	5/10/2010	15	/	3+4 Methylphenol (cresol, m+p)	2.2	ug/L	U	K	> 2X holding time requirement
600 36 356	Daanya	1/10/2010	2/2/2010	15	7	3:4 Mathidahanal (arasal min)	2.2	/1	11	D	> 3V halding time partitions and
699-26-35C	B23BX2	1/19/2010	2/3/2010	15	/	3+4 Methylphenol (cresol, m+p)	2.2	ug/L	U	R	> 2X holding time requirement
COO CC EAV	DAZOKE	2/16/2010	2/16/2010	20	-	3:404-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4	0.6	v=11	U		2 2 h - Idi ti
699-S6-E4K	B230K5	2/16/2010	3/16/2010	28 15	7	3+4 Methylphenol (cresol, m+p)	0.6	ug/L	U	R R	> 2X holding time requirement
299-E24-16	B24PL0	4/25/2010	5/10/2010			4,6-Dinitro-2-methylphenol	2.2	ug/L	3000		> 2X holding time requirement
699-26-35C	B23BX2	1/19/2010	2/3/2010	15	7	4,6-Dinitro-2-methylphenol	2.2	ug/L	U	R	> 2X holding time requirement
299-E24-16	B24PL0	4/25/2010	5/10/2010	15 15		4-Chloro-3-methylphenol	2.4	ug/L		R	> 2X holding time requirement
699-26-35C	B23BX2	1/19/2010	2/3/2010	28	7	4-Chloro-3-methylphenol	2.4	ug/L	U	R	> 2X holding time requirement
699-S6-E4K	B230K5	2/16/2010	3/16/2010		7	4-Chloro-3-methylphenol	0.5	ug/L	U	R	> 2X holding time requirement
699-22-35	B2KL33	4/16/2012	5/4/2012	18		4-Methyl-2-pentanone	1	ug/L		R	> 2X holding time requirement
699-23-34B	B2KL53	4/16/2012	5/8/2012	22 18	7	4-Methyl-2-pentanone	1	ug/L	U	R	> 2X holding time requirement
699-24-33	B2KL63	4/16/2012	5/4/2012			4-Methyl-2-pentanone	1	ug/L		R	> 2X holding time requirement
699-24-34A	B2KL73	4/16/2012	5/4/2012	18	7	4-Methyl-2-pentanone	1	ug/L	U	R	> 2X holding time requirement
699-24-34B	B2KL87	4/16/2012	5/4/2012	18	7	4-Methyl-2-pentanone	1	ug/L	U	R	> 2X holding time requirement
699-24-35	B2KLB0	4/17/2012	5/4/2012	17	7	4-Methyl-2-pentanone	1	ug/L	U	R	> 2X holding time requirement
699-26-35A	B2KLC0	4/17/2012	5/4/2012	17		4-Methyl-2-pentanone	1	ug/L		R	> 2X holding time requirement
299-E24-16	B24PL0	4/25/2010	5/10/2010	15	7	4-Nitrophenol	2.2	ug/L	U	R	> 2X holding time requirement
699-26-35C	B23BX2	1/19/2010	2/3/2010	15	7	4-Nitrophenol	2.2	ug/L	U	R	> 2X holding time requirement
699-S6-E4K	B230K5	2/16/2010	3/16/2010	28	7	4-Nitrophenol	0.6	ug/L	U	R	> 2X holding time requirement
699-S6-E4K	B230K5	2/16/2010	3/16/2010	28	7	Acenaphthene	0.5	ug/L	U	R	> 2X holding time requirement
699-22-35	B2KL33	4/16/2012	5/4/2012	18	7	Acetone	1	ug/L	U	R	> 2X holding time requirement
699-23-34B	B2KL53	4/16/2012	5/8/2012	22	7	Acetone	1	ug/L	U	R	> 2X holding time requirement
699-24-33	B1WKK3	8/29/2008	11/12/2008	75	7	Acetone	1	ug/L	U	R	> 2X holding time requirement
699-24-33	B2KL63	4/16/2012	5/4/2012	18	7	Acetone	1	ug/L	U	R	> 2X holding time requirement
699-24-34A	B2KL73	4/16/2012	5/4/2012	18	7	Acetone	1.4	ug/L	J	J	> 2X holding time requirement
699-24-34B	B2KL87	4/16/2012	5/4/2012	18	7	Acetone	1	ug/L	U	R	> 2X holding time requirement
699-24-35	B2KLB0	4/17/2012	5/4/2012	17	7	Acetone	1	ug/L	U	R	> 2X holding time requirement
699-25-34D	B1WK06	8/26/2008	11/12/2008	78	7	Acetone	1	ug/L	U	R	> 2X holding time requirement

Table A-1. Summary of Sample Results Qualified Because of Holding Times Exceedances

				# of Days to	Holding Time					Validation	
Well Name	Sample ID	Collection Date	Analysis Date	Analysis	Requirement (days)	Analyte Name	Value Reported	Units	Lab Qualifier	Qualifier	Reason
699-26-35A	B2KLC0	4/17/2012	5/4/2012	17	7	Acetone	1	ug/L	U	R	> 2X holding time requirement
299-E25-236	B2N3C8	12/12/2012	12/26/2012	14	7	Aldrin	0.0095	ug/L	UO	J	< 2X holding time requirement
699-22-35	B2KL33	4/16/2012	5/4/2012	18	7	Benzene	1	ug/L	U	R	> 2X holding time requirement
699-23-34B	B2KL53	4/16/2012	5/8/2012	22	7	Benzene	1	ug/L	U	R	> 2X holding time requirement
699-24-33	B2KL63	4/16/2012	5/4/2012	18	7	Benzene	1	ug/L	U	R	> 2X holding time requirement
699-24-34A	B2KL73	4/16/2012	5/4/2012	18	7	Benzene	1	ug/L	U	R	> 2X holding time requirement
699-24-34B	B2KL87	4/16/2012	5/4/2012	18	7	Benzene	1	ug/L	U	R	> 2X holding time requirement
699-24-35	B2KLB0	4/17/2012	5/4/2012	17	7	Benzene	1	ug/L	U	R	> 2X holding time requirement
699-26-35A	B2KLC0	4/17/2012	5/4/2012	17	7	Benzene	1	ug/L	U	R	> 2X holding time requirement
699-S6-E4K	B230K5	2/16/2010	3/16/2010	28	7	Benzothiazole	0.5	ug/L	U	R	> 2X holding time requirement
699-S6-E4K	B230K5	2/16/2010	3/16/2010	28	7	Bis(2-ethylhexyl) phthalate	12	ug/L		J-	> 2X holding time requirement
299-E25-94	B1X3K9	9/3/2008	10/28/2008	55	7	Bromide	0.25	mg/L	U	R	> 2X holding time requirement
699-22-35	B2KL33	4/16/2012	5/4/2012	18	7	Carbon disulfide	1	ug/L	U	R	> 2X holding time requirement
699-23-34B	B2KL53	4/16/2012	5/8/2012	22	7	Carbon disulfide	1	ug/L	U	R	> 2X holding time requirement
699-24-33	B2KL63	4/16/2012	5/4/2012	18	7	Carbon disulfide	1	ug/L	U	R	> 2X holding time requirement
699-24-34A	B2KL73	4/16/2012	5/4/2012	18	7	Carbon disulfide	1	ug/L	U	R	> 2X holding time requirement
699-24-34B	B2KL87	4/16/2012	5/4/2012	18	7	Carbon disulfide	1	ug/L	U	R	> 2X holding time requirement
699-24-35	B2KLB0	4/17/2012	5/4/2012	17	7	Carbon disulfide	1	ug/L	U	R	> 2X holding time requirement
699-26-35A	B2KLC0	4/17/2012	5/4/2012	17	7	Carbon disulfide	1	ug/L	U	R	> 2X holding time requirement
699-22-35	B2KL33	4/16/2012	5/4/2012	18	7	Carbon tetrachloride	1	ug/L	U	R	> 2X holding time requirement
699-23-34B	B2KL53	4/16/2012	5/8/2012	22	7	Carbon tetrachloride	1	ug/L	U	R	> 2X holding time requirement
699-24-33	B2KL63	4/16/2012	5/4/2012	18	7	Carbon tetrachloride	1	ug/L	U	R	> 2X holding time requirement
699-24-34A	B2KL73	4/16/2012	5/4/2012	18	7	Carbon tetrachloride	1	ug/L	U	R	> 2X holding time requirement
699-24-34B	B2KL87	4/16/2012	5/4/2012	18	7	Carbon tetrachloride	1	ug/L	U	R	> 2X holding time requirement
699-24-35	B2KLB0	4/17/2012	5/4/2012	17	7	Carbon tetrachloride	1	ug/L	U	R	> 2X holding time requirement
699-26-35A	B2KLC0	4/17/2012	5/4/2012	17	7	Carbon tetrachloride	1	ug/L	U	R	> 2X holding time requirement
299-E25-94	B1X3K9	9/3/2008	10/27/2008	54	7	Chloride	16.4	mg/L	D	J-	> 2X holding time requirement
699-22-35	B2KL33	4/16/2012	5/4/2012	18	7	Chlorobenzene	1	ug/L	U	R	> 2X holding time requirement
699-23-34B	B2KL53	4/16/2012	5/8/2012	22	7	Chlorobenzene	1	ug/L	U	R	> 2X holding time requirement
699-24-33	B2KL63	4/16/2012	5/4/2012	18	7	Chlorobenzene	1	ug/L	U	R	> 2X holding time requirement
699-24-34A	B2KL73	4/16/2012	5/4/2012	18	7	Chlorobenzene	1	ug/L	U	R	> 2X holding time requirement
699-24-34B	B2KL87	4/16/2012	5/4/2012	18	7	Chlorobenzene	1	ug/L	U	R	> 2X holding time requirement
699-24-35	B2KLB0	4/17/2012	5/4/2012	17	7	Chlorobenzene	1	ug/L	U	R	> 2X holding time requirement
699-26-35A	B2KLC0	4/17/2012	5/4/2012	17	7	Chlorobenzene	1	ug/L	U	R	> 2X holding time requirement
699-22-35	B2KL33	4/16/2012	5/4/2012	18	7	Chloroform	1	ug/L	U	R	> 2X holding time requirement
699-23-34B	B2KL53	4/16/2012	5/8/2012	22	7	Chloroform	1	ug/L	U	R	> 2X holding time requirement
699-24-33	B2KL63	4/16/2012	5/4/2012	18	7	Chloroform	1	ug/L	U	R	> 2X holding time requirement
699-24-34A	B2KL73	4/16/2012	5/4/2012	18	7	Chloroform	1	ug/L	U	R	> 2X holding time requirement
699-24-34B	B2KL87	4/16/2012	5/4/2012	18	7	Chloroform	1	ug/L	U	R	> 2X holding time requirement
699-24-35	B2KLB0	4/17/2012	5/4/2012	17	7	Chloroform	1	ug/L	U	R	> 2X holding time requirement
699-26-35A	B2KLC0	4/17/2012	5/4/2012	17	7	Chloroform	1	ug/L	J	J	> 2X holding time requirement
699-22-35	B2KL33	4/16/2012	5/4/2012	18	7	cis-1,2-Dichloroethylene	1	ug/L	U	R	> 2X holding time requirement
699-23-34B	B2KL53	4/16/2012	5/8/2012	22	7	cis-1,2-Dichloroethylene	1	ug/L	U	R	> 2X holding time requirement
699-24-33	B2KL63	4/16/2012	5/4/2012	18	7	cis-1,2-Dichloroethylene	1	ug/L	U	R	> 2X holding time requirement
699-24-34A	B2KL73	4/16/2012	5/4/2012	18	7	cis-1,2-Dichloroethylene	1	ug/L	U	R	> 2X holding time requirement
699-24-34B	B2KL87	4/16/2012	5/4/2012	18	7	cis-1,2-Dichloroethylene	1	ug/L	U	R	> 2X holding time requirement
699-24-35	B2KLB0	4/17/2012	5/4/2012	17	7	cis-1,2-Dichloroethylene	1	ug/L	U	R	> 2X holding time requirement
699-26-35A	B2KLC0	4/17/2012	5/4/2012	17	7	cis-1,2-Dichloroethylene	1	ug/L	U	R	> 2X holding time requirement
699-22-35	B269D9	7/19/2010	9/17/2010	60	7	Coliform Bacteria	1	Col/100mL	U	R	> 2X holding time requirement
699-24-34B	B1WKL4	9/22/2008	10/14/2008	22	7	Coliform Bacteria	1	Col/100mL	U	R	> 2X holding time requirement
graph makes as a		Walter Statement	100200000000000000000000000000000000000	1000		Dinoseb(2-secButyl-4,6-	200		2,000		
299-E24-16	B24PL0	4/25/2010	5/10/2010	15	7	dinitrophenol)	2.4	ug/L	UN	R	> 2X holding time requirement
						Dinoseb(2-secButyl-4,6-					
699-26-35C	B23BX2	1/19/2010	2/3/2010	15	7	dinitrophenol)	2.4	ug/L	U	R	> 2X holding time requirement
299-E25-236	B2N337	12/12/2012	12/26/2012	14	7	Endrin aldehyde	0.0095	ug/L	U	J	< 2X holding time requirement
699-22-35	B2KL33	4/16/2012	5/4/2012	18	7	Ethyl cyanide	2	ug/L	U	R	> 2X holding time requirement
699-23-34B	B2KL53	4/16/2012	5/8/2012	22	7	Ethyl cyanide	2	ug/L	U	R	> 2X holding time requirement

Table A-1. Summary of Sample Results Qualified Because of Holding Times Exceedances

				" (5 .						V 10 1 22	
NAZ-II NI	6 1 10	6.11.11.15.1		# of Days to	Holding Time	A LI A	V 1 D 1 1	110-May	1.1.0 1.6	Validation	
Well Name	Sample ID	Collection Date	Analysis Date	Analysis	Requirement (days)	Analyte Name	Value Reported	Units	Lab Qualifier	Qualifier	Reason
699-24-33	B2KL63	4/16/2012	5/4/2012	18	7	Ethyl cyanide	2	ug/L	U	R	> 2X holding time requirement
699-24-34A 699-24-34B	B2KL73 B2KL87	4/16/2012	5/4/2012 5/4/2012	18 18	7	Ethyl cyanide	2	ug/L	U	R	> 2X holding time requirement
		4/16/2012				Ethyl cyanide		ug/L		R	> 2X holding time requirement
699-24-35	B2KLB0	4/17/2012	5/4/2012	17	7	Ethyl cyanide	2	ug/L	U	R	> 2X holding time requirement
699-26-35A	B2KLC0	4/17/2012	5/4/2012	17	7	Ethyl cyanide	2	ug/L	U	R	> 2X holding time requirement
699-22-35	B2KL33	4/16/2012	5/4/2012	18	7	Ethylbenzene	1	ug/L	U	R	> 2X holding time requirement
699-23-34B	B2KL53	4/16/2012	5/8/2012	22	7	Ethylbenzene	1	ug/L	U	R	> 2X holding time requirement
699-24-33	B2KL63	4/16/2012	5/4/2012	18	7	Ethylbenzene	1	ug/L	U	R	> 2X holding time requirement
699-24-34A	B2KL73	4/16/2012	5/4/2012	18	7	Ethylbenzene	1	ug/L	U	R	> 2X holding time requirement
699-24-34B	B2KL87	4/16/2012	5/4/2012	18	7	Ethylbenzene	1	ug/L	U	R	> 2X holding time requirement
699-24-35	B2KLB0	4/17/2012	5/4/2012	17	7	Ethylbenzene	1	ug/L	U	R	> 2X holding time requirement
699-26-35A	B2KLC0	4/17/2012	5/4/2012	17	7	Ethylbenzene	1	ug/L	U	R	> 2X holding time requirement
299-E25-94	B1X3K9	9/3/2008	10/28/2008	55	28	Fluoride	0.25	mg/L	U	J	< 2X holding time requirement
699-22-35	B2KL33	4/16/2012	5/4/2012	18	7	Methylene chloride	1	ug/L	U	R	> 2X holding time requirement
699-23-34B	B2KL53	4/16/2012	5/8/2012	22	7	Methylene chloride	1	ug/L	U	R	> 2X holding time requirement
699-24-33	B2KL63	4/16/2012	5/4/2012	18	7	Methylene chloride	1	ug/L	U	R	> 2X holding time requirement
699-24-34A	B2KL73	4/16/2012	5/4/2012	18	7	Methylene chloride	1	ug/L	U	R	> 2X holding time requirement
699-24-34B	B2KL87	4/16/2012	5/4/2012	18	7	Methylene chloride	1	ug/L	U	R	> 2X holding time requirement
699-24-35	B2KLB0	4/17/2012	5/4/2012	17	7	Methylene chloride	1	ug/L	U	R	> 2X holding time requirement
699-26-35A	B2KLC0	4/17/2012	5/4/2012	17	7	Methylene chloride	1	ug/L	U	R	> 2X holding time requirement
699-S6-E4K	B230K5	2/16/2010	3/16/2010	28	7	Naphthalene	0.5	ug/L	U	R	> 2X holding time requirement
299-E13-5	B1TWR7	6/4/2008	6/6/2008	2	2	Nitrate	10.7	mg/L		J	< 2X holding time requirement
299-E17-23	B1X0T5	9/2/2008	9/6/2008	4	2	Nitrate	22.8	mg/L	D	J	< 2X holding time requirement
299-E17-26	B1X0V3	9/2/2008	9/6/2008	4	2	Nitrate	29.5	mg/L	D	J	< 2X holding time requirement
299-E24-21	B1X0W1	9/2/2008	9/9/2008	7	2	Nitrate	46.3	mg/L	D	J-	> 2X holding time requirement
299-E24-22	B1WYW6	9/2/2008	9/9/2008	7	2	Nitrate	12.9	mg/L	D	J-	> 2X holding time requirement
299-E25-18	B1TWP9	4/28/2008	5/2/2008	4	2	Nitrate	8.74	mg/L		j	< 2X holding time requirement
299-E25-2	B1X001	9/2/2008	9/9/2008	7	2	Nitrate	16.5	mg/L	D	J-	> 2X holding time requirement
299-E25-40	B1X013	9/2/2008	9/13/2008	11	2	Nitrate	6.95	mg/L	_	J-	> 2X holding time requirement
299-E25-41	B1X025	9/2/2008	9/9/2008	7	2	Nitrate	26.6	mg/L	D	J-	> 2X holding time requirement
299-E25-93	B1X037	9/2/2008	9/9/2008	7	2	Nitrate	53.5	mg/L	D	J-	> 2X holding time requirement
299-E25-94	B1X3K9	9/3/2008	10/27/2008	54	2	Nitrate	28.2	mg/L	D	J-	> 2X holding time requirement
699-26-34A	B1T4M5	5/16/2008	5/22/2008	6	2	Nitrate	18.8	mg/L	D	J-	> 2X holding time requirement
299-E13-5	B1TWR7	6/4/2008	6/6/2008	2	2	Nitrite	0.25	mg/L	Ü	j	< 2X holding time requirement
299-E17-23	B1X0T5	9/2/2008	9/12/2008	10	2	Nitrite	0.25	mg/L	U	R	> 2X holding time requirement
299-E17-26	B1X0V3	9/2/2008	9/12/2008	10	2	Nitrite	0.25	mg/L	Ü	R	> 2X holding time requirement
299-E24-21	B1X0W1	9/2/2008	9/12/2008	10	2	Nitrite	0.25	mg/L	U	R	> 2X holding time requirement
299-E24-22	B1WYW6	9/2/2008	9/12/2008	10	2	Nitrite	0.25	mg/L	Ü	R	> 2X holding time requirement
299-E25-18	B1TWP9	4/28/2008	5/2/2008	4	2	Nitrite	2.5	mg/L	UD	J	< 2X holding time requirement
299-E25-18 299-E25-2	B1X001	9/2/2008	9/13/2008	11	2	Nitrite	0.25	mg/L	U	R	> 2X holding time requirement
299-E25-2 299-E25-40	B1X001	9/2/2008	9/13/2008	11	2	Nitrite	0.25	mg/L	U	R	> 2X holding time requirement
299-E25-40 299-E25-41	B1X013 B1X025	9/2/2008	9/13/2008	11	2	Nitrite	0.25		U	R	
299-E25-41 299-E25-93	B1X025 B1X037	9/2/2008	9/13/2008	13	2		0.25	mg/L	U	100	> 2X holding time requirement
				13 55		Nitrite		mg/L		R	> 2X holding time requirement
299-E25-94	B1X3K9	9/3/2008	10/28/2008		2	Nitrite	0.25	mg/L	U	R	> 2X holding time requirement
699-26-34A	B1T4M5	5/16/2008	5/22/2008	6	2	Nitrite	0.25	mg/L	U	R	> 2X holding time requirement
699-S19-E13	B22YX7	3/9/2010	4/6/2010	28	2	Nitrite	0.04	mg/L	U	R	> 2X holding time requirement
699-S6-E4A	B1TKC3	6/4/2008	6/6/2008	2	2	Nitrite	0.25	mg/L	U	J	< 2X holding time requirement
299-E17-14	B1Y744	1/14/2009	1/21/2009	7	2	Nitrogen in Nitrate	27.7	mg/L	D	J-	> 2X holding time requirement
299-E24-16	B2HL18	11/9/2011	11/13/2011	4	2	Nitrogen in Nitrate	15.9	mg/L	D	J	< 2X holding time requirement
299-E24-20	B1TL77	3/12/2008	3/20/2008	8	2	Nitrogen in Nitrate	13	mg/L	D	J-	> 2X holding time requirement
299-E25-20	B2B457	3/30/2011	4/4/2011	5	2	Nitrogen in Nitrate	13	ug/mL	D	J-	> 2X holding time requirement
299-E25-32P	B2HF76	11/10/2011	11/14/2011	4	2	Nitrogen in Nitrate	1.3	mg/L	D	J	< 2X holding time requirement
699-14-38	B28JT9	12/17/2010	12/20/2010	3	2	Nitrogen in Nitrate	4.26	ug/mL	D	J	< 2X holding time requirement
699-26-35A	B2HH64	11/3/2011	11/5/2011	2	2	Nitrogen in Nitrate	4.2	mg/L	D	J	< 2X holding time requirement
699-2-6A	B2HLK1	11/28/2011	12/2/2011	4	2	Nitrogen in Nitrate	6.1	mg/L	D	J	< 2X holding time requirement
699-2-7	B2HLK3	11/28/2011	12/2/2011	4	2	Nitrogen in Nitrate	7.4	mg/L	D	J	< 2X holding time requirement
699-32-22A	B2HLK7	12/1/2011	12/4/2011	3	2	Nitrogen in Nitrate	4.7	mg/L	D	J	< 2X holding time requirement

Table A-1. Summary of Sample Results Qualified Because of Holding Times Exceedances

				# of Days to	Holding Time					Validation	
Well Name	Sample ID	Collection Date	Analysis Date	Analysis	Requirement (days)	Analyte Name	Value Reported	Units	Lab Qualifier	Qualifier	Reason
699-43-45	B2HH72	11/9/2011	11/13/2011	4	2	Nitrogen in Nitrate	1.2	mg/L	D	J	< 2X holding time requirement
699-44-39B	B2F7K8	11/9/2011	11/12/2011	3	2	Nitrogen in Nitrate	0.83	mg/L		J	< 2X holding time requirement
699-45-42	B2HLL6	11/17/2011	11/20/2011	3	2	Nitrogen in Nitrate	1	mg/L	D	J	< 2X holding time requirement
699-52-19	B23JB1	3/21/2010	3/24/2010	3	2	Nitrogen in Nitrate	1.31	ug/mL	DX	J	< 2X holding time requirement
699-S6-E4A	B2HM24	12/1/2011	12/4/2011	3	2	Nitrogen in Nitrate	6.4	mg/L	D	J	< 2X holding time requirement
299-E24-16	B2HL18	11/9/2011	11/11/2011	2	2	Nitrogen in Nitrite	0.003	mg/L	U	J	< 2X holding time requirement
299-E25-32P	B2HF76	11/10/2011	11/13/2011	3	2	Nitrogen in Nitrite	0.003	mg/L	UN	J	< 2X holding time requirement
699-14-38	B28JT9	12/17/2010	12/20/2010	3	2	Nitrogen in Nitrite	0.036	ug/mL	UD	J	< 2X holding time requirement
699-24-34A	B2HH27	11/7/2011	11/9/2011	2	2	Nitrogen in Nitrite	0.003	mg/L	U	J	< 2X holding time requirement
699-2-6A	B2HLK1	11/28/2011	12/1/2011	3	2	Nitrogen in Nitrite	0.003	mg/L	U	J	< 2X holding time requirement
699-2-7	B2HLK3	11/28/2011	11/30/2011	2	2	Nitrogen in Nitrite	0.027	mg/L		J	< 2X holding time requirement
699-43-45	B2HH72	11/9/2011	11/11/2011	2	2	Nitrogen in Nitrite	0.003	mg/L	U	J	< 2X holding time requirement
699-44-39B	B2F7K8	11/9/2011	11/12/2011	3	2	Nitrogen in Nitrite	0.003	mg/L	U	J	< 2X holding time requirement
699-45-42	B2HLL6	11/17/2011	11/20/2011	3	2	Nitrogen in Nitrite	0.003	mg/L	Ü	J	< 2X holding time requirement
699-52-19	B23JB1	3/21/2010	3/24/2010	3	2	Nitrogen in Nitrite	0.036	ug/mL	UDX	J	< 2X holding time requirement
699-S6-E4A	B1WYL5	10/21/2008	2/12/2009	114	2	Nitrogen in Nitrite	0.026	ug/mL	UD	R	> 2X holding time requirement
699-S6-E4K	B230K5	2/16/2010	3/16/2010	28	7	n-Nitrosodi-n-dipropylamine	0.5	ug/L	U	R	> 2X holding time requirement
699-25-34A	B1YXN8	3/16/2009	4/15/2009	30		Oil and grease	2.1	mg/L	UN	R	> 2X holding time requirement
699-25-34B	B1YXP4	3/16/2009	4/15/2009	30		Oil and grease	2.1	mg/L	UN	R	> 2X holding time requirement
299-E24-16	B24PL0	4/25/2010	5/10/2010	15	7	Pentachlorophenol	2.4	ug/L	U	R	> 2X holding time requirement
699-26-35C	B23BX2	1/19/2010	2/3/2010	15	7	Pentachlorophenol	2.4	ug/L	U	R	> 2X holding time requirement
699-S6-E4K	B230K5	2/16/2010	3/16/2010	28	7	Pentachlorophenol	0.5	ug/L	UT	R	> 2X holding time requirement
299-E24-16	B24PL0	4/25/2010	5/10/2010	15	7	Phenol	2.3	ug/L	U	R	> 2X holding time requirement
699-26-35C	B23BX2	1/19/2010	2/3/2010	15	7	Phenol	2.3	ug/L	U	R	> 2X holding time requirement
699-S6-E4K	B230K5	2/16/2010	3/16/2010	28	7	Phenol	0.9	ug/L	U	R	> 2X holding time requirement
299-E17-23	B1X0T5	9/2/2008	9/12/2008	10	28	Phosphate	0.25	mg/L	U	J	< 2X holding time requirement
299-E17-26	B1X0V3	9/2/2008	9/12/2008	10	28	Phosphate	0.25	mg/L	U	J	< 2X holding time requirement
299-E24-21	B1X0W1	9/2/2008	9/12/2008	10	28	Phosphate	0.25	mg/L	U	J	< 2X holding time requirement
299-E24-22	B1RHJ9	1/3/2008	1/8/2008	5	28	Phosphate	0.25	mg/L	U	J	< 2X holding time requirement
299-E24-22	B1WYW6	9/2/2008	9/12/2008	10	28	Phosphate	0.25	mg/L	U	J	< 2X holding time requirement
299-E25-2	B1X001	9/2/2008	9/13/2008	11	28	Phosphate	0.25	mg/L	U	J	< 2X holding time requirement
299-E25-40	B1X013	9/2/2008	9/13/2008	11	28	Phosphate	0.25	mg/L	U	J	< 2X holding time requirement
299-E25-41	B1X025	9/2/2008	9/13/2008	11	28	Phosphate	0.25	mg/L	U	J	< 2X holding time requirement
299-E25-93	B1X037	9/2/2008	9/15/2008	13	28	Phosphate	0.25	mg/L	U	J	< 2X holding time requirement
299-E25-94	B1X3K9	9/3/2008	10/28/2008	55	28	Phosphate	0.25	mg/L	U	J	< 2X holding time requirement
699-26-34A	B1T4M5	5/16/2008	5/22/2008	6	28	Phosphate	0.25	mg/L	U	J	< 2X holding time requirement
699-S6-E4A	B1TKC3	6/4/2008	6/6/2008	2	28	Phosphate	0.25	mg/L	U	J	< 2X holding time requirement
699-S6-E4K	B230K5	2/16/2010	3/16/2010	28	7	Pyrene	0.5	ug/L	U	R	> 2X holding time requirement
299-E25-94	B1X3K9	9/3/2008	10/28/2008	55	28	Sulfate	115	mg/L	D	J	< 2X holding time requirement
699-22-35	B2KL33	4/16/2012	5/4/2012	18	7	Tetrachloroethene	1	ug/L	U	R	> 2X holding time requirement
699-23-34B	B2KL53	4/16/2012	5/8/2012	22	7	Tetrachloroethene	1	ug/L	U	R	> 2X holding time requirement
699-24-33	B2KL63	4/16/2012	5/4/2012	18	7	Tetrachloroethene	1	ug/L	U	R	> 2X holding time requirement
699-24-34A	B2KL73	4/16/2012	5/4/2012	18	7	Tetrachloroethene	1.6	ug/L	J	J	> 2X holding time requirement
699-24-34B	B2KL87	4/16/2012	5/4/2012	18	7	Tetrachloroethene	1.7	ug/L	J	J	> 2X holding time requirement
699-24-35	B2KLB0	4/17/2012	5/4/2012	17	7	Tetrachloroethene	1.4	ug/L	J	J	> 2X holding time requirement
699-26-35A	B2KLC0	4/17/2012	5/4/2012	17	7	Tetrachloroethene	1.3	ug/L	J	J	> 2X holding time requirement
699-22-35	B2KL33	4/16/2012	5/4/2012	18	7	Tetrahydrofuran	2	ug/L	U	R	> 2X holding time requirement
699-23-34B	B2KL53	4/16/2012	5/8/2012	22	7	Tetrahydrofuran	2	ug/L	U	R	> 2X holding time requirement
699-24-33	B2KL63	4/16/2012	5/4/2012	18	7	Tetrahydrofuran	2	ug/L	U	R	> 2X holding time requirement
699-24-34A	B2KL73	4/16/2012	5/4/2012	18	7	Tetrahydrofuran	2	ug/L	U	R	> 2X holding time requirement
699-24-34B	B2KL87	4/16/2012	5/4/2012	18	7	Tetrahydrofuran	2	ug/L	U	R	> 2X holding time requirement
699-24-35	B2KLB0	4/17/2012	5/4/2012	17	7	Tetrahydrofuran	2	ug/L	U	R	> 2X holding time requirement
699-26-35A	B2KLC0	4/17/2012	5/4/2012	17	7	Tetrahydrofuran	2	ug/L	U	R	> 2X holding time requirement
699-22-35	B2KL33	4/16/2012	5/4/2012	18	7	Toluene	1	ug/L	U	R	> 2X holding time requirement
699-23-34B	B2KL53	4/16/2012	5/8/2012	22	7	Toluene	1	ug/L	U	R	> 2X holding time requirement
699-24-33	B2KL63	4/16/2012	5/4/2012	18	7	Toluene	1	ug/L	U	R	> 2X holding time requirement
699-24-34A	B2KL73	4/16/2012	5/4/2012	18	7	Toluene	1.4	ug/L	J	J	> 2X holding time requirement

Table A-1. Summary of Sample Results Qualified Because of Holding Times Exceedances

				# of Days to	Holding Time					Validation	
Well Name	Sample ID	Collection Date	Analysis Date	Analysis	Requirement (days)	Analyte Name	Value Reported	Units	Lab Qualifier	Qualifier	Reason
699-24-34B	B2KL87	4/16/2012	5/4/2012	18	7	Toluene	1	ug/L	U	R	> 2X holding time requirement
699-24-35	B2KLB0	4/17/2012	5/4/2012	17	7	Toluene	1	ug/L	U	R	> 2X holding time requirement
699-26-35A	B2KLC0	4/17/2012	5/4/2012	17	7	Toluene	1	ug/L	U	R	> 2X holding time requirement
299-E17-25	B20449	5/1/2009	6/5/2009	35	28	Total organic carbon	0.307	mg/L	В	J	< 2X holding time requirement
299-E17-26	B1T4V0	2/27/2008	4/16/2008	49	28	Total organic carbon	0.454	mg/L		J	< 2X holding time requirement
299-E24-24	B20461	5/1/2009	6/5/2009	35	28	Total organic carbon	0.3	mg/L	U	J	< 2X holding time requirement
299-E25-32P	B24PP2	4/28/2010	5/29/2010	31	28	Total organic carbon	0.3	mg/L	U	J	< 2X holding time requirement
299-E25-34	B24PR2	4/26/2010	5/26/2010	30	28	Total organic carbon	0.3	mg/L	U	J	< 2X holding time requirement
699-23-34A	B1T612	2/25/2008	4/16/2008	51	28	Total organic carbon	1.05	mg/L	X	J	< 2X holding time requirement
699-23-34B	B1T617	2/25/2008	4/16/2008	51	28	Total organic carbon	22.6	mg/L		J	< 2X holding time requirement
699-24-33	B1T622	2/25/2008	4/16/2008	51	28	Total organic carbon	38.3	mg/L	X	J	< 2X holding time requirement
699-24-34A	B1T631	2/25/2008	4/16/2008	51	28	Total organic carbon	21	mg/L		J	< 2X holding time requirement
699-24-34B	B1T636	2/25/2008	4/16/2008	51	28	Total organic carbon	2.91	mg/L	X	J	< 2X holding time requirement
699-24-34C	B1T641	2/26/2008	4/16/2008	50	28	Total organic carbon	11	mg/L		J	< 2X holding time requirement
699-24-35	B1T646	2/26/2008	4/16/2008	50	28	Total organic carbon	12.8	mg/L		J	< 2X holding time requirement
699-25-33A	B1T4D2	2/26/2008	4/16/2008	50	28	Total organic carbon	7.29	mg/L		J	< 2X holding time requirement
699-25-34A	B1T4F6	2/26/2008	4/16/2008	50	28	Total organic carbon	1.21	mg/L		J	< 2X holding time requirement
699-25-34B	B1T4H4	2/26/2008	4/16/2008	50	28	Total organic carbon	0.633	mg/L		J	< 2X holding time requirement
699-26-33	B1T4L4	3/6/2008	4/25/2008	50	28	Total organic carbon	0.439	mg/L		J	< 2X holding time requirement
699-26-35A	B1T4P3	3/6/2008	4/25/2008	50	28	Total organic carbon	0.386	mg/L		J	< 2X holding time requirement
299-E17-19	B2HRN4	10/6/2011	11/18/2011	43	28	Total organic halides	8.9	ug/L	В	J	< 2X holding time requirement
299-E25-35	B2HRP1	10/5/2011	11/16/2011	42	28	Total organic halides	5.6	ug/L	В	J	< 2X holding time requirement
299-E25-47	B2HRP6	10/5/2011	11/15/2011	41	28	Total organic halides	3.8	ug/L	JB	J	< 2X holding time requirement
299-E25-48	B2HF90	10/5/2011	11/16/2011	42	28	Total organic halides	9.9	ug/L	В	J	< 2X holding time requirement
299-E26-13	B2HRR1	10/5/2011	11/17/2011	43	28	Total organic halides	5.8	ug/L	В	J	< 2X holding time requirement
		, ,	, ,			Total petroleum hydrocarbons -		- 0			9
699-14-38	B27WM1	12/17/2010	12/30/2010	13	7	diesel range	70	ug/L	U	J	< 2X holding time requirement
699-22-35	B2KL33	4/16/2012	5/4/2012	18	7	trans-1,2-Dichloroethylene	1	ug/L	UXT	R	> 2X holding time requirement
699-23-34B	B2KL53	4/16/2012	5/8/2012	22	7	trans-1,2-Dichloroethylene	1	ug/L	UXT	R	> 2X holding time requirement
699-24-33	B2KL63	4/16/2012	5/4/2012	18	7	trans-1,2-Dichloroethylene	1	ug/L	UTX	R	> 2X holding time requirement
699-24-34A	B2KL73	4/16/2012	5/4/2012	18	7	trans-1,2-Dichloroethylene	1	ug/L	UXT	R	> 2X holding time requirement
699-24-34B	B2KL87	4/16/2012	5/4/2012	18	7	trans-1,2-Dichloroethylene	1	ug/L	UTX	R	> 2X holding time requirement
699-24-35	B2KLB0	4/17/2012	5/4/2012	17	7	trans-1,2-Dichloroethylene	1	ug/L	UTX	R	> 2X holding time requirement
699-26-35A	B2KLC0	4/17/2012	5/4/2012	17	7	trans-1,2-Dichloroethylene	1	ug/L	UTX	R	> 2X holding time requirement
699-S6-E4K	B230K5	2/16/2010	3/16/2010	28	7	Tributyl phosphate	0.5	ug/L	U	R	> 2X holding time requirement
699-22-35	B2KL33	4/16/2012	5/4/2012	18	7	Trichloroethene	1	ug/L	U	R	> 2X holding time requirement
699-23-34B	B2KL53	4/16/2012	5/8/2012	22	7	Trichloroethene	1	ug/L	U	R	> 2X holding time requirement
699-24-33	B2KL63	4/16/2012	5/4/2012	18	7	Trichloroethene	1	ug/L	U	R	> 2X holding time requirement
699-24-34A	B2KL73	4/16/2012	5/4/2012	18	7	Trichloroethene	1	ug/L	U	R	> 2X holding time requirement
699-24-34B	B2KL87	4/16/2012	5/4/2012	18	7	Trichloroethene	1	ug/L	U	R	> 2X holding time requirement
699-24-35	B2KLB0	4/17/2012	5/4/2012	17	7	Trichloroethene	1	ug/L	U	R	> 2X holding time requirement
699-26-35A	B2KLC0	4/17/2012	5/4/2012	17	7	Trichloroethene	1	ug/L	U	R	> 2X holding time requirement
699-S6-E4K	B230K5	2/16/2010	3/16/2010	28	7	Tris-2-chloroethyl phosphate	0.5	ug/L	U	R	> 2X holding time requirement
699-22-35	B2KL33	4/16/2012	5/4/2012	18	7	Vinyl chloride	1	ug/L	U	R	> 2X holding time requirement
699-23-34B	B2KL53	4/16/2012	5/8/2012	22	7	Vinyl chloride	1	ug/L	U	R	> 2X holding time requirement
699-24-33	B2KL63	4/16/2012	5/4/2012	18	7	Vinyl chloride	1	ug/L	U	R	> 2X holding time requirement
699-24-34A	B2KL73	4/16/2012	5/4/2012	18	7	Vinyl chloride	1	ug/L	U	R	> 2X holding time requirement
699-24-34B	B2KL87	4/16/2012	5/4/2012	18	7	Vinyl chloride	1	ug/L	U	R	> 2X holding time requirement
699-24-35	B2KLB0	4/17/2012	5/4/2012	17	7	Vinyl chloride	1	ug/L	U	R	> 2X holding time requirement
699-26-35A	B2KLC0	4/17/2012	5/4/2012	17	7	Vinyl chloride	1	ug/L	U	R	> 2X holding time requirement
699-22-35	B2KL33	4/16/2012	5/4/2012	18	7	Xylenes (total)	1	ug/L	Ü	R	> 2X holding time requirement
699-23-34B	B2KL53	4/16/2012	5/8/2012	22	7	Xylenes (total)	1	ug/L	Ü	R	> 2X holding time requirement
699-24-33	B2KL63	4/16/2012	5/4/2012	18	7	Xylenes (total)	1	ug/L	U	R	> 2X holding time requirement
699-24-34A	B2KL73	4/16/2012	5/4/2012	18	7	Xylenes (total)	1.4	ug/L	J	J	> 2X holding time requirement
699-24-34B	B2KL73	4/16/2012	5/4/2012	18	7	Xylenes (total)	1.4	ug/L	U	R	> 2X holding time requirement
699-24-35	B2KLB0	4/17/2012	5/4/2012	17	7	Xylenes (total)	1	ug/L	U	R	> 2X holding time requirement
699-26-35A	B2KLC0	4/17/2012	5/4/2012	17	7	Xylenes (total)	1	ug/L	U	R	> 2X holding time requirement
333 LO 3371	DENECO	.,,	5, ,,2012		1	1,101100 (10101)	-	~6/ L		- 11	

Table A-3. Summary of 2008 Sample Results Qualified Because of Method Blank, Preparation Blank or Field Blank Contamination

report PQL or assign 8 flag as required report PQL or assign 8 flag as required.	Rejected result; Conc < 10x blank result; lab did not report PQL or assig Rejected result; Conc < 10x blank result; lab did not report PQL or assig Rejected result; Conc < 10x blank result; lab did not report PQL or assig Rejected result; Conc < 10x blank result; lab did not report PQL or assig Rejected result; Conc < 10x blank result; lab did not report PQL or assigned to the substance of	6010_METALS_ICP 6010_METALS_ICP	д <u>д</u> д	000	ug/L	23.2		Iron	1T4D6
In Billing as required (gr. Billing as required	Rejected result; Conc < 10x blank result; lab did not report PQL or assigned result; Conc < 10x blank result; lab did not report PQL or assigned result; Conc < 10x blank result; lab did not report PQL or assigned result; lab did not report PQL or assigned result; lab did not result; lab did not report PQL or assigned result; lab did not report PQL or assigned result; lab did not result; lab	6010_METALS_ICP	R R	0 0	ug/L	23.2		Iron	1T4D6
(gr. B flag as required	Rejected result; Conc < 10x blank result; lab did not report PQL or assigned Rejected result; Conc < 10x blank result; lab did not report PQL or assigned Rejected result; Conc < 10x blank result; lab did not report PQL or assigned Rejected result; Conc < 10x blank result; lab did not report PQL or assigned Rejected R	METALS	R	C	- 1/gu				TITO
Ago B flag as required	Rejected result; Conc < 10x blank result; lab did not report PQL or assign				na/I	19.7		Iron	17409
(gr. B flag as required		METALS	R	C	ng/L	85.1		Iron	1RTP6
(gn B flag as required	Rejected result; Conc < 10x blank result; lab did not report PQL or assis	METALS	R	С	ug/L	19.1		Iron	1RTP5
Ign B flag as required Ign B flag as required	Conc < 10x blank result; lab did not	6010_METALS_ICP	R	C	ug/L	130		Iron	1RTM2
ign B flag as required	Rejected result; Conc < 10x blank result; lab did not report PQL or assign	6010_METALS_ICP	R	С	ug/L	12.9		Iron	1RTM1
0	Rejected result; Conc < 10x blank result; lab did not report PQL or assign	METALS_ICP	R	С	ug/L	142		Iron	1RCL9
ien B flae as required	Rejected result; Conc < 10x blank result; lab did not report PQL or assign	METALS_ICP	R	С	ug/L	28.6		Iron	1RCL8
report PQL or assign B flag as required	Rejected result; Conc < 10x blank result; lab did not report PQL or assign	Ç	D	С	ug/L	4		Copper	1V8B9
ign B flag as required	Rejected result; Conc < 10x blank result; lab did not report PQL or assign	유	R	С	ug/L	4.8		Copper	1V898
report PQL or assign B flag as required	Rejected result; Conc < 10x blank result; lab did not report PQL or assign	6010_METALS_ICP	R	С	ug/L	15.9		Copper	1TX16
ign B flag as required	Rejected result; Conc < 10x blank result; lab did not report PQL or assign	G P	R	С	ug/L	12.2		Copper	1TX15
eport PQL or assign B flag as required	Rejected result; Conc < 10x blank result; lab did not report PQL or assign	무	R	C	ng/L	00.00		Copper	1TX12
report POL or assign B flag as required	Rejected result: Conc < 10x blank result: lab did not report PQL or assis	6010 METALS ICP	20 ;	0 1	ug/L	8.2		Copper	1TX11
ign B flag as required	Rejected result; Conc < 10x blank result; lab did not report PQL or assis	G G	R	С	ug/L	30.5		Copper	1TX08
ign B flag as required	Rejected result; Conc < 10x blank result; lab did not report PQL or assign		R	С	ug/L	4.4		Copper	1TX07
ot report PQL or assign B flag as required	Rejected result; Conc < 10x blank result; lab did not report PQL or assis	6010 METALS ICP	20	C	ug/L	4.3		Copper	1T403
10	PQL not provided by lab; result flagged with a "U" at the reported con-		C		ug/L	4		Copper	1RVM6
ic .	PQL not provided by lab; result flagged with a "U" at the reported con-		C		ug/L	4		Copper	1RVM6
16	PQL not provided by lab; result flagged with a "U" at the reported con-		U		ug/L	4.9		Copper	1RVK6
10	PQL not provided by lab; result flagged with a "U" at the reported con-	6010_METALS_ICP	U		ug/L	4.9		Copper	1RVK6
report PQL or assign B flag as required	Rejected result; Conc < 10x blank result; lab did not report PQL or assign		R	C	ug/L	5.9		Copper	1RTT5
report PQL or assign B flag as required	Rejected result; Conc < 10x blank result; lab did not report PQL or assign		R	С	ug/L	6.1		Copper	1RTT4
ign B flag as required	Rejected result; Conc < 10x blank result; lab did not report PQL or assign	METALS_ICP	20	С	ug/L	6.8		Copper	1RTP5
report PQL or assign B flag as required	Rejected result; Conc < 10x blank result; lab did not report PQL or assign	P	20	C	ug/L	5.5		Copper	1RTM2
ign B flag as required	Rejected result; Conc < 10x blank result; lab did not report PQL or assign		D	С	ug/L	7.1		Copper	1RHK9
report PCL or assign B flag as required	Rejected result; Conc < 10x blank result; lab did not report PQL or assign	BUTO_METALS_ICP			ug/L	4. 1		Copper	IKCKI
		BUJU_MEIALS_ICP	9 5		, L'Bu	9.4		copper	RCM/
18 in pinas as reduired	rejected result, contex tox dails result, far did not report a constant context.	METALS	2		1/8/L	0 10		Cindindin	ELMI24
and the state of a state of the	rejected resurt, conc < 10x drain, resurt, lab drain te port Foct of assignment	OUTO INICIANO ICL	9 3		/Bn	350		Chromium	CCIVILL
on flag as required	Bajactad result: Conc / 10v hlank result: lab did not report POI or assis	GOTO METALS ICD	0	2	110/1	00		Chromium	1TM33
eport PQL or assign B flag as required	Rejected result: Conc < 10x blank result: lab did not report PQL or assis	METALS ICP	R	С	ug/L	15,3		Chromium	1TM28
ign B flag as required	Rejected result; Conc < 10x blank result; lab did not report PQL or assis	6010 METALS ICP	æ	С	ug/L	13		Chromium	1TM27
ign B flag as required	Rejected result; Conc < 10x blank result; lab did not report PQL or assign	METALS ICP	20	C	ug/L	23.7		Chromium	1TM25
ign B flag as required	Rejected result; Conc < 10x blank result; lab did not report PQL or assign	METALS ICP	20	С	ug/L	23.1		Chromium	1TM24
ot report PQL or assign B flag as required	Rejected result; Conc < 10x blank result; lab did not report PQL or assign	6010_METALS_ICP	R	С	ug/L	10.3		Chromium	LTM22
ign B flag as required	Rejected result; Conc < 10x blank result; lab did not report PQL or assign	METALS_ICP	20	С	ug/L	6.7		Chromium	1TM21
ign B flag as required	Rejected result; Conc < 10x blank result; lab did not report PQL or assign	6010_METALS_ICP	R	С	ug/L	4		Chromium	1113
Ign B flag as required	Rejected result; Conc < 10x blank result; lab did not report PQL or assign	Ç	R	С	ug/L	5.4		Chromium	ІТІН4
ign B flag as required	Rejected result; Conc < 10x blank result; lab did not report PQL or assign	무	R	С	ug/L	15.2		Chromium	ITLF4
ign B flag as required	Rejected result; Conc < 10x blank result; lab did not report PQL or assign		R	С	ug/L	5.1		Chromium	ITLC4
ign B flag as required	Rejected result; Conc < 10x blank result; lab did not report PQL or assign	CP	R	С	ug/L	4.2		Chromium	1TL86
ign B flag as required	Rejected result; Conc < 10x blank result; lab did not report PQL or assign		70	С	ug/L	12.3		Chromium	1TL77
ign B flag as required	Rejected result; Conc < 10x blank result; lab did not report PQL or assign		20	С	ug/L	11.9		Chromium	LTL76
ign 8 flag as required	Rejected result; Conc < 10x blank result; lab did not report PQL or assign		20	C	ug/L	15.5		Chromium	11646
ign b flag as required	Rejected result; Conc < 10x blank result; lab did not report PQL or assign	BUJU_METALS_ICP	-	C	ug/L	5.3		Chromium	11645
Pari Da I a Barra I a I Barra I Barra I a I Barra	rejected result, context tox plank result, lab did not report regular assignments		2	0	J/Bn	0 0		Cinomium	THOIL
ot report PG to a sought of large as required	rejected result. Conc. < 10x blank result, lab did not report to consiste		9 3		ug/r	10:5		Chromium	11040
in B firm as required	Rejected result: Conc. 100 blank result: lab did not report according		0 3	2	ug/L	105		Chromium	11640
ign D ring as required	Rejected result. Conc. 10x blank result, lab did not report according	COLO METALS ICE	0 2	2 (ug/L	36.7		Chromium	TESE
in B flor as required	Rejected result: Conc > 10x blank result: lab did not report Quo assis		0 ;		ng/L	13.8		Chromium	17631
ion Biflag as required	Rejected result: Conc < 10x blank result: lab did not report POI or assis	6010 METALS ICP	20	0	118/1	46		Chromium	T628
ign B flag as required	Rejected result: Conc < 10x blank result: lab did not report PQL or assir		R	С	ug/L	8.5		Chromium	T622
ign B flag as required	Rejected result; Conc < 10x blank result; lab did not report PQL or assis		D	C	ug/L	6.7		Chromium	T617
report PQL or assign B flag as required	Rejected result; Conc < 10x blank result; lab did not report PQL or assign	6010 METALS ICP	20	C	ug/L	14.6		Chromium	T4H9
ign B flag as required	Rejected result; Conc < 10x blank result; lab did not report PQL or assis		æ	С	ug/L	14.1		Chromium	T4H8
report PQL or assign B flag as required	Rejected result; Conc < 10x blank result; lab did not report PQL or assign		æ	С	ug/L	6.3		Chromium	T4F8
ign B flag as required	did not	6010_METALS_ICP	R	С	ug/L	7.9		Chromium	T4D7
report PQL or assign B flag as required	d not	6010_METALS_ICP	R	С	ug/L	12.6		Chromium	LT4D6
10	a "U" at	6010_METALS_ICP	C		ug/L	11.7		Chromium	LRTP6
K	ed with a "U"	6010_METALS_ICP	_		ug/L	11.5		Chromium	LRTP5
		8260_VOA_GCMS		JB	2 ug/L	0.11 2		Chloromethane	1W5J9
	Flagged with a U; 2 MUL but 5 PQL	8ZBU_VUA_GCMS		18	Z UB/L	0./3		Chloromethane	MSDA
	Flagged with a C. ENIOCOGLET Qu	OZOO_AON_GCIAIS		10 00	7/8/L	0.82		Chloromethan	TANGEDO
	Flagged with a 11: > MDI hit < PDI	SWOD NOV DOWN		B &	r ug/r	0.73		Chloromethane	1W5C1
	Flagged with a II >> MDI hirt < POI	8260 VOA GCMS		B 6	ב משאר	0.79		Chloromethane	1W599
	Flagged with a II > MOI but < POI	SWID AUN USCR	= 4	ā i) 11g/1	0.73		Chloromethane	WASS.
	Flagged with a II: > MDI hit < POI	8260 VOA GCMS	= 0	Б	ב משלו	0.83		Chloromethane	1W503
	Florand with a II. > MOI but < POI	SWOO NOV GOVE		IB O	I ug/L	0.13		Chloromethane	IM/AD7
	rejected result, professional Jacgement based on act or mend.	SOUND COME	= 7	5 0	ug/r	0 31	9	Carbon disulfide	1W203
(g) is ind g an indigen an	professional independs based on la	OND CAMP OF OR	0 :	0 (ug/i	2 9	all	Birl 3 orthollowell obth	103/01
enort POL or assign R flag as required	Conc < 10x blank result: lab	6010 METALS ICP	20 ;	0	118/1	82		Antimony	T4W1
len B flag as required	Rejected result: Conc < 10x blank result: lab did not report PQL or assis	6010 METALS ICP	R	0	ug/L	43.2		Antimony	T4V8
ion R flag as required	Rejected result: Conc < 10x blank result: lab did not report PQL or assignment	6010 METALS ICP	χ ;	7 (ng/L	47.7		Antimony	TAVS
ion R flag as required	Reserved result: Conc < 10x blank result: lab did not report PQL or assign	GOTO METALS ICP	D :	5 (110/1	50.2	1	Antimony	TAV3
ign B flag as required	Rejected result: Conc < 10x blank result: lab did not report PQL or assis	6010 METALS ICP	20	С	ug/L	45.9		Antimony	T4V2
ign B flag as required	Rejected result; Conc < 10x blank result; lab did not report PQL or assign	6010_METALS_ICP	D	C	ug/L	39.4		Antimony	T417
ign B flag as required	Rejected result; Conc < 10x blank result; lab did not report PQL or assign	6010 METALS ICP	20	С	ug/L	62.3		Antimony	17471
ign B flag as required	Rejected result; Conc < 10x blank result; lab did not report PQL or assign	6010 METALS ICP	R	С	ug/L	68.6		Antimony	17410
) which is greater than acceptance criteria. Sample results are less than the MB contamination.	Rejected; Method blank has greater than 2X the PQL (2 ug/l) (37 ug/L)	8260_VOA_GCMS	R	В	ng/L	29		Acetone	1WKK8
the PQL (2 ug/l) (15 ug/L) which is greater than acceptance criteria. Sample results are slightly less than 2X the MB contamination.	Rejected: Method blank has greater than 2X the PQL (2 ug/l) (15 ug/L)	8260 VOA GCMS	R	B 1	ug/L	29	1	Acetone	1WKK8
which is greater than acceptance criteria. Sample results are less than the MB contamination.	Rejected; Method blank has greater than 2X the PQL (2 ug/l) (37 ug/L)	8260 VOA GCMS	20	80	ug/L	28		Acetone	1WKJ8
) which is greater than acceptance criteria. Sample results are slightly less than 2X the MB contamination.	Rejected; Method blank has greater than 2X the PQL (2 ug/l) (15 ug/L)	8260_VOA_GCMS	R	В	ug/L	28		Acetone	1WKJ8
) which is greater than acceptance criteria. Sample results are less than the MB contamination.	Relected: Method blank has greater than 2X the PQL (2 ug/l) (37 ug/L)	8260 VOA_GCMS	R	В	ug/L	37		Acetone	WKH9
) which is greater than acceptance criteria. Sample results are slightly greater than 2X the MB contamination	Rejected; Method blank has greater than 2X the PQL (2 ug/l) (15 ug/L)	8260_VOA_GCMS	R	В	ug/L	37		Acetone	1МКН9
) which is greater than acceptance criteria. Sample results are less than the MB contamination.	Rejected; Method blank has greater than 2X the PQL (2 ug/l) (37 ug/L)	8260_VOA_GCMS	R	В	ug/L	27		Acetone	WKH4
) which is greater than acceptance criteria. Sample results are slightly less than 2X the MB contamination.	Rejected; Method blank has greater than 2X the PQL (2 ug/l) (15 ug/L)	8260_VOA_GCMS	R	В	ug/L	27		Acetone	WKH4
(L) which is greater than acceptance criteria. Sample results are less than the MB contamination.	Rejected; Method blank has greater than 2X the PQL (2 ug/l) (270 ug/L	8260_VOA_GCMS	UJR	В	ug/L	7.3		Acet	V8C4
Reason		METHOD_NAME	Validation Qualifier	Lab Qualifier	Units		Value Reported	Analyte Name	Sample ID
					~	Value Reported (AFTER			

Table A-3. Summary of 2008 Sample Results Qualified Because of Method Blank, Preparation Blank or Field Blank Contamination

	Estimated high "1+"; > PQL but < 10x the blank result [Flagged with a U; > MDL but ≤ PQL [Estimated high "1+"; > PQL but < 10x the blank result [Estimated high "1+", > PQL but < 10x the blank result	8 8 8	J+	0 0	ng/L	7370 8770	Potassium	LX0V4
	high "J+"; th a U; ≥ N	CP						
	high " +".	-	c :	BC -	5000 ug/L	4880	Potassium	LXOT7
	high "J+";	6010_METALS_ICP E	F #	0 0	ug/L	9800	Potassium	LXOR9
	"+";	ÇP	+	С	ug/L	9030	Potassium	LXOR8
	Estimated high "J+"; > PQL but < 10x the blank result	ICP I	J+	С	ug/L	9970	Potassium	IWYX7
	th "J+";	G P	J+	С	ug/L	10700	Potassium	1WYX6
		6010 METALS ICP FI	c :	BC BC	5000 ug/L	4910	Potassium	IWYT4
	Estimated high "J+": > PQL but < 10x the blank result	유 !	+	C	ng/L	6240	Potassium	IWYT3
	POL not provided by lab; result flagged with a "II" at the reported conc	9 9		BC CC	ug/r	6.7	Nickel	17887
	PUL not provided by lab; result flagged with a "U" at the reported conc	3 5		BC BC	ng/L	5.9	Nickel	FILMI
	PQL not provided by lab; result flagged with a "U" at the reported conc	P	C	BC	νgλ	5.2	Nickel	1WJT8
	<u></u>	CP	U	BC	ng/L	7.9	Nickel	1WJT2
	ا ت	CP	U	BC	ug/L	5.4	Nickel	OTUWI
	PQL not provided by lab; result flagged with a "U" at the reported conc		С	BC	ug/L	4.3	Nickel	IVMK4
	PQL not provided by lab; result flagged with a "U" at the reported conc	P	C		ug/L	7.1	Nickel	1T4R8
	PQL not provided by lab; result flagged with a "U" at the reported conc	_	С		ug/L	4.4	Nickel	1T4R7
	PQL not provided by lab: result flagged with a "U" at the reported conc	6010 METALS ICP P	C		ng/L	5.00	Nickel	1T4P7
	ided by lab: result flagged with a "L	1			1/811	4.7	Nicke	1T4K4
	POL not provided by lab: result flagged with a "U" at the reported conc		u		ug/L	6.6	Nickel	17403
as required	Rejected result; Conc < 10x blank result; lab did not report PQL or assign B flag		20	С	ug/L	5.6	Nickel	IRTN1
as required	Rejected result: Conc < 10x blank result: lab did not report POL or assign B flag as required	6010 METALS ICP R	20 3	0 0	ng/L	4	Nicke	IRCVO
as required	Rejected result: Conc < 10x hlank result: Jah did not report POI or assign R flag	1	æ ç	0 0	110/1	25.2	Nickel	IRCM7
	POL not provided by lab: result flagged with a "U" at the reported conc	4	UJ UJ	C	ug/L	5.9	Nickel	IRCM6
	PQL not provided by lab; result flagged with a "U" at the reported conc		U	,	ug/L	1.6	Methylene chloride	IWKK8
blank has greater than 2X the PQL (2 ug/l) (620 ug/l) which is greater than acceptance criteria. Sample results are less than the MB contamination.	thod		R	В	ug/L	88	Methylene chloride	1WKK3
		_	U	-	ug/L	1.7	Methylene chloride	IWKJ8
	ided by lab; result flagged with a	8260_VOA_GCMS P	-	_	ug/L	1.6	Methylene chloride	LWKH9
	by lab; result hagged with a O		: c		", L	1.9	Methylene chloride	IWKH4
	-		: C	- 0	ng/L	1.4	Wietnylene chloride	IWK36
	occupio provided by lab; result flagged with a Tu at the reported conc	SOUT AND TONIO		2 2	/\ /8n	1.2	Math described	DZYWI
	rock not provided by lab; result flagged with a "III" at the reported conc	1		0 0	ug/L	1 2 1	Mathylane chlorida	DONANT
Piccocci citati acacheanac aireana, pambic i canara air aiginal icas air	POI not provided by lab; result flagged with a "II" at the reported conc		=	BI	1987	1 0	Mathylanachlorida	JW/KUE
2X the POL (1 = 2/1) which is greater than accompanie criteria. Sample results are slightly less than 2X the MB contamination.	Rejected: Method blank has greater than 2X the POI (2 µg/I) (15 µg/I) which is	8260 VOA GCMS R	20 ;	20 (1/811	5.80	Methylene chloride	IVMI 2
greater than acceptance criteria. Sample results are less than the M	Rejected: Method blank has greater than 2X the POL (2 ug/l) (37 ug/L) which is		20 :	80	ug/L	9	Methylene chloride	IVMLO
greater than acceptance criteria. Sample results are less than the N	thar		20	В	ug/L	6.3	Methylene chloride	1VMJ8
			С	BC		5.8	Manganese	TWTO
	Flagged with a U; ≥ MDL but ≤ PQL	6010_METALS_ICP FI	U	BC	15 ug/L	4.3	Manganese	1TKK5
	Flagged with a U; ≥ MDL but ≤ PQL	_	C	BC	15 ug/L	5.6	Manganese	IRDW5
	Flagged with a U; ≥ MDL but ≤ PQL	CP	C	BC BC	15 ug/L	6.2	Manganese	IRCP6
	Flagged with a U; ≥ MDL but ≤ PQL	L	C	BC	15 ug/L	5.2	Manganese	IRCP2
	Estimated high "J+"; > PQL but < 10x the blank result	5	+	C	ug/L	125	Iron	TX86/
	Act not provided by lab; result lagged with a lot at the reported conc		: c	, E	ug/r	20.0	Iron	TV/19
	DOI not provided by lab receil flagged with a "II" at the reported cone			BC C	112/1 r	300	lean in on	17770
	POL not provided by lab: result flagged with a "U" at the reported conc		u	BC	T/8n	42.2	Iron	1X7P7
	PQL not provided by lab; result flagged with a "U" at the reported conc	6010_METALS_ICP P	С	BC	ug/L	28.6	Iron	IX7P6
	Estimated high "J+"; > PQL but < 10x the blank result		J+	ВС	ug/L	99.4	Iron	1X6X0
	Estimated high "J+"; > PQL but < 10x the blank result	6010_METALS_ICP E	J+	C	ug/L	121	Iron	LX023
	Estimated high "J+"; > PQL but < 10x the blank result	6010_METALS_ICP E:	J+	С	ug/L	132	Iron	1X011
	Estimated high "J+"; > PQL but < 10x the blank result	METALS_ICP	J+	C	ug/L	128	Iron	IWYY9
	PQL not provided by lab; result flagged with a "U" at the reported conc	METALS_ICP	U	BC	ng/L	54.2	Iron	IW546
	Estimated high "J+"; > PQL but < 10x the blank result	BUTO_WELATS_ICP	+	1	ng/L	263	Iron	14887
as required	nc < 10x blank result; lab di	6010_METALS_ICP	- 2		ug/L	39.6	Iron	1888
	Estimated night "J+"; > PQL but < 10x the blank result	POTO_WEIARS_ICP	1		ug/L	254	Iron	IV884
as required	rejected result; Conc < 10x blank result; lab did not report PQL or assign b hag	DULU_METALS_ICP	. 2	, (ng/L	25.7	Iron	TVODS
as required	rejected result: Conc. / 10x highly result: jab did not report. Ict or assign o hag	6010 METALS ICD B	D 3	0 0	118/1 108/1-	23.7	Iron	1/883
as required	Rejected result: Conc < 10x blank result: Jah did not report POI or assign R flag	6010 METALS ICP R	æ ;	0 0	1921	200	ron	10891
as required	Rejected result: Conc < 10x hlank result: lah did not report POI or assign R flag	6010 METALS ICP R	20 2	0 0	110/1	0.50	Iron	17898
as required	rejected result. Conc. < 10x blank result. Inh did not report the or assign of the	3 5	0 3	0 (12/1 200 c	47.0	To a contract of	10000
as required	Rejected result: Conc < 10v blank result: lab did not report according Refer	6010 METALS ICD B	0 :	2 (119/1	20.6	roo i	1/222
as required	Rejected result: Conc < 10v hlank result: Jah did not report POI or assign B flag	3 9	B :	2 1	110/1	85.7	FOR	TKMO
as required	Rejected result: Conc < 10x highly result: jab did not report POI or assign B flag	6010 METALS ICP R	20 3	7 (119/1	49.1	Iron	TKIOTO
as required	Rejected result: Conc < 10v blank result: lab did not report according Rejag	3 5	, a	י ר	10/1	87.7	ron .	17646
as required	Rejected result: Conc < 10x blank result: lab did not report POI or assign B flag	3 3	Σ ;	0 0	118/1	199	Iron	17645
as required	Rejected result: Conc < 10x hlank result: Jab did not report POL or assign B flag	6010 METALS ICP R	B	0	1/811	124	Iron	17641
as required	Rejected result: Conc < 10x blank result: lab did not report POI or assign B flag as required	6010 METALS ICP R	20 3	0 0	IIg/I	34.4	Iron	11640
ac required	Beleated result: Conc. / 10x blank result: lab did not report BOI or assign B flag	SOLO WELVIS ICE	0 ::		-gr -	200	ron	17636
as required	rejected result: Conc < 10x blank result: lab did not report PQL or assign o hag	6010 METALS ICE B	0 2	2 (18/L	12/	Too I	17621
as required	rejected result. Conc < 10x blank result, lab did not report FQL or assign bling	COTO METALS ICE	3 33	0 (// C	201		22017
or required	Rejected result: Conc > 10v hlank result: lab did not report according Rejected	6010 METALS ICP B	, a	0 0	119/1	153	ron .	17622
or required	Bolested result: Conc. 10x blank result: lab did not report BOI or assign B flag	SOLO METAIS ICE	0		::a/l	66.5	Iron	17617
as required	Rejected result: Conc < 10v hlank result: Jah did not report POI or assign B flag	6010 METALS ICP R	D :	רו ני	110/1	140	ron	ITAVS
as required	Beierted result: Conc < 10x blank result: Jah did not report POI or assign B flag	SOTO METALS ICE		2	119/1	15.8	ron	TAVA
as required	Rejected result: Conc < 10x blank result: lab did not report POI or assign B flag	6010 METALS ICP R	20 7	0 0	IIg/I	17.4	Iron	1T4V2
as ransitrad	Rejected result: Conc < 10x blank result: lab did not report POL or assign B flag	ECOTO METALS ICP R	0 3	2 (119/1	34.1	iron i	TAVO
ac romiirad	Rejected result: Conc < 10x blank result: lab did not report POL or assign B flag	ACOLO METALS ICP	20 :	7 1	ug/L	19.8	Iron	ITATQ
as required	Rejected result: Conc < 10x blank result: lab did not report POL or assign B flag	6010 METALS ICP R	R	0	ug/L	20	Iron	1T4R8
as required	Rejected result; Conc < 10x blank result; lab did not report PQL or assign B flag as required	6010_METALS_ICP R	R	С	ug/L	20.3	Iron	1T4P7
as required	Rejected result; Conc < 10x blank result; lab did not report PQL or assign B flag	6010_METALS_ICP R	R	С	ug/L	25.5	Iron	1T4N6
as required	Rejected result; Conc < 10x blank result; lab did not report PQL or assign B flag	6010_METALS_ICP R	R	С	ug/L	33	Iron	1T4K4
as required	Rejected result; Conc < 10x blank result; lab did not report PQL or assign B flag	6010_METALS_ICP R	R	С	ug/L	23.8	Iron	1T4K0
as required	Rejected result; Conc < 10x blank result; lab did not report PQL or assign B flag	6010_METALS_ICP R	20	C	ug/L	20.6	Iron	114/9
as ledui en	Rejected result. Conc. < 10x plank result; lab did not report PQL or assign billag as required.	6010 METALS ICE R	, ,) (ng/c	30.7	Ton II on	11409
ar required	ult: Conc < 10x blank result: lab	METALS	0 ;	2 (1/8/1	30.7	l con	TAHO
as required	Conc < 10x blank result; lab		20	С	ng/L	10.6	Iron	1T4H8
as required		6010_METALS_ICP R	R	С	ug/L	46.9	Iron	1T4F8
	Conc < 10x blank result; lab		R	С	ug/L	7.7		1T4F7
Reason		METHOD_NAME	Validation Qualifier	Lab Qualifier	VALIDATION) Units	Value Reported VAI	Analyte Name Valu	Sample ID

Table A-3. Summary of 2008 Sample Results Qualified Because of Method Blank, Preparation Blank or Field Blank Contamination

| 12.6 14.3 15.7 22.1 22.1 22.1 22.1 22.8 22.8 22.6 23.6 20.7 25.7 25.9 29.9 29.9 29.9 29.9 29.9 215.5 215.5 215.5 215.5 215.5 215.5 215.5 215.5 215.5 215.6 217.5 217.5 217.5 217.5 217.5 217.5 217.5 217.5 217.5 217.5 217.5 217.5 217.5 217.5 217.5 217.5 217.7 218.6 2 | 205
205
205
2143
1443
1443
157
2111
2111
2116
2165
207
207
207
207
207
207
207
207 | 15.4
15.4
10.5
12.6
12.6
12.6
13.4
13.4
13.4
13.5
14.3
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6 | 11.6
15.6
15.6
15.1
15.7
12.5
12.5
13.7
22.1
22.1
22.1
22.1
22.1
22.1
22.1
22 | 26.9 26.2 26.2 27.4 27.4 27.4 27.4 27.4 27.4 27.7 27.1 27.1 27.1 27.1 27.1 27.1 27.1
 | 20.6 20.6 20.6 20.6 20.6 20.6 20.6 20.6 | 302.9
303.8
304.0
306.9
306.9
306.9
306.9
307.0
115.4
111.7
221.8
221.8
221.8
221.8
221.8
221.8
221.8
221.8
221.8
221.8
221.8
221.8
221.8
221.8
221.8
221.8
221.8
221.8
221.8
221.8
221.8
221.8
221.8
221.8
221.8
221.8
221.8
221.8
221.8
221.8
221.8
221.8
221.8
221.8
221.8
221.8
221.8
221.8
221.8
221.8
221.8
221.8
221.8
221.8
221.8
221.8
221.8
221.8
221.8
221.8
221.8
221.8
221.8
221.8
221.8
221.8
221.8
221.8
221.8
221.8
221.8
221.8
221.8
221.8
221.8
221.8
221.8
221.8
221.8
221.8
221.8
221.8
221.8
221.8
221.8
221.8
221.8
221.8
221.8
221.8
221.8
221.8
221.8
221.8
221.8
221.8
221.8
221.8
221.8
221.8
221.8
221.8
221.8
221.8
221.8
221.8
221.8
221.8
221.8
221.8
221.8
221.8
221.8
221.8
221.8
221.8
221.8
221.8
221.8
221.8
221.8
221.8
221.8
221.8
221.8
221.8
221.8
221.8
221.8
221.8
221.8
221.8
221.8
221.8
221.8
221.8
221.8
221.8
221.8
221.8
221.8
223.8
224.8
225.8
226.8
227.8
227.8
227.8
227.8
227.8
227.8
227.8
227.8
227.8
227.8
227.8
227.8
227.8
227.8
227.8
227.8
227.8
227.8
227.8
227.8
227.8
227.8
227.8
227.8
227.8
227.8
227.8
227.8
227.8
227.8
227.8
227.8
227.8
227.8
227.8
227.8
227.8
227.8
227.8
227.8
227.8
227.8
227.8
227.8
227.8
227.8
227.8
227.8
227.8
227.8
227.8
227.8
227.8
227.8
227.8
227.8
227.8
227.8
227.8
227.8
227.8
227.8
227.8
227.8
227.8
227.8
227.8
227.8
227.8
227.8
227.8
227.8
227.8
227.8
227.8
227.8
227.8
227.8
227.8
227.8
227.8
227.8
227.8
227.8
227.8
227.8
227.8
227.8
227.8
227.8
227.8
227.8
227.8
227.8
227.8
227.8
227.8
227.8
227.8
227.8
227.8
227.8
227.8
227.8
227.8
227.8
227.8
227.8
227.8
227.8
227.8
227.8
227.8
227.8
227.8
227.8
227.8
227.8
227.8
227.8
227.8
227.8
227.8
227.8
227.8
227.8
227.8
227.8
227.8
227.8
227.8
227.8
227.8
227.8
227.8
227.8
227.8
227.8
227.8
227.8
227.8
227.8
227.8
227.8
227.8
227.8
227.8
22 |
132
223
308
84
206
269
269
262
262
263
274
1154
1154
1154
1157
2218
2218
2218
2218
2314
2317
2417
2517
2517
2517
2518
2518
2519
2519
2519
2519
2519
2519
2519
2519
2519
2519
2519
2519
2519
2519
2519
2519
2519
2519
2519
2519
2519
2519
2519
2519
2519
2519
2519
2519
2519
2519
2519
2519
2519
2519
2519
2519
2519
2519
2519
2519
2519
2519
2519
2519
2519
2519
2519
2519
2519
2519
2519
2519
2519
2519
2519
2519
2519
2519
2519
2519
2519
2519
2519
2519
2519
2519
2519
2519
2519
2519
2519
2519
2519
2519
2519
2519
2519
2519
2519
2519
2519
2519
2519
2519
2519
2519
2519
2519
2519
2519
2519
2519
2519
2519
2519
2519
2519
2519
2519
2519
2519
2519
2519
2519
2519
2519
2519
2519
2519
2519
2519
2519
2519
2519
2519
2519
2519
2519
2519
2519
2519
2519
2519
2519
2519
2519
2519
2519
2519
2519
2519
2519
2519
2519
2519
2519
2519
2519
2519
2519
2519
2519
2519
2519
2519
2519
2519
2519
2519
2519
2519
2519
2519
2519
2519
2519
2519
2519
2519
2519
2519
2519
2519
2519
2519
2519
2519
2519
2519
2519
2519
2519
2519
2519
2519
2519
2519
2519
2519
2519
2519
2519
2519
2519
2519
2519
2519
2519
2519
2519
2519
2519
2519
2519
2519
2519
2519
2519
2519
2519
2519
2519
2519
2519
2519
2519
2519
2519
2519
2519
2519
2519
2519
2519
2519
2519
2519
2519
2519
2519
2519
2519
2519
2519
2519
2519
2519
2519
2519
2519
2519
2519
2519
2519
2519
2519
2519
2519
2519
2519
2519
2519
2519
2519
2519
2519
2519
2519
2519
2519
2519
2519
2519
2519
2519
2519
2519
2519
2519
2519
2519
2519
2519
2519
2519
2519
2519
2519
2519
2519
2519
2519
2519
2519
2519
2519
2519
2519
2519
2519
2519
2519
2519
2519
2519
2519
2519
2519
2519
2519
2519
2519
2519
2519
2519
2519
2519
2519
2519
2519
2519
2519
2519
2519
2519
2519
2519
2519
2519
2519
2519
2519
2519
2519
2519
2519 | 11.9 7.4 13.2 22.4 20.8 8.4 8.6 8.4 115.4 115.4 115.4 125.5 125.6 126.6 126.6 126.7 127.7 | 44 74 74 74 74 74 74 74 74 74 74 74 74 7 | 7 4 4 4 11.15 20.2 20.2 20.2 20.2 20.2 20.2 20.2 20.
 | 5.3
12.7
7.4
4.4
7.4
1119
7.4
20.6
20.6
20.6
20.6
20.6
20.6
20.6
20.6
20.6
20.6
20.6
20.6
20.6
20.6
20.6
20.6
20.6
20.6
20.6
20.6
20.6
20.6
20.6
20.6
20.6
20.6
20.6
20.6
20.6
20.6
20.6
20.6
20.6
20.6
20.6
20.6
20.6
20.6
20.6
20.6
20.6
20.6
20.6
20.6
20.6
20.6
20.6
20.6
20.6
20.6
20.6
20.6
20.6
20.6
20.6
20.6
20.6
20.6
20.6
20.6
20.6
20.6
20.6
20.6
20.6
20.6
20.6
20.6
20.6
20.6
20.6
20.6
20.6
20.6
20.6
20.6
20.6
20.6
20.6
20.6
20.6
20.6
20.6
20.6
20.6
20.6
20.6
20.6
20.6
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7 | 53
53
1127
7
74
4.4
7,4
11.9
11.9
222.4
20.6
20.6
20.6
20.6
20.6
20.6
20.6
20.6
20.6
20.6
20.6
20.6
20.6
20.6
20.6
20.6
20.6
20.6
20.6
20.6
20.6
20.6
20.6
20.6
20.6
20.6
20.6
20.6
20.6
20.6
20.6
20.6
20.6
20.6
20.6
20.6
20.6
20.6
20.6
20.6
20.6
20.6
20.6
20.6
20.6
20.6
20.6
20.6
20.6
20.6
20.6
20.6
20.6
20.6
20.6
20.6
20.6
20.6
20.6
20.6
20.6
20.6
20.6
20.6
20.6
20.6
20.6
20.6
20.6
20.6
20.6
20.6
20.6
20.6
20.6
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7 | 18.1
18.1
5.3
5.3
5.3
11.2
7.4
4.4
7.4
11.9
20.2
22.4
20.8
4.0
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
2 |
11.7
5.3
14.4
18.1
18.1
18.1
19.1
19.2
19.3
19.4
11.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
1 | 57 117 118 133 1444 174 178 181 182 224 224 244 174 244 174 206 266 266 266 267 27 27 27 27 28 21 21 21 21 21 21 21 21 21 21 21 21 21 | 713 713 713 713 714 715 717 717 717 718 714 714 714 717 716 717 717 718 717 718 719 719 719 719 719 719 719 719 719 719 |
11.13
11.13
11.13
11.13
11.17
11.17
11.17
11.17
11.17
11.18
11.19
11.19
11.19
11.19
11.19
11.19
11.19
11.19
11.19
11.19
11.19
11.19
11.19
11.19
11.19
11.19
11.19
11.19
11.19
11.19
11.19
11.19
11.19
11.19
11.19
11.19
11.19
11.19
11.19
11.19
11.19
11.19
11.19
11.19
11.19
11.19
11.19
11.19
11.19
11.19
11.19
11.19
11.19
11.19
11.19
11.19
11.19
11.19
11.19
11.19
11.19
11.19
11.19
11.19
11.19
11.19
11.19
11.19
11.19
11.19
11.19
11.19
11.19
11.19
11.19
11.19
11.19
11.19
11.19
11.19
11.19
11.19
11.19
11.19
11.19
11.19
11.19
11.19
11.19
11.19
11.19
11.19
11.19
11.19
11.19
11.19
11.19
11.19
11.19
11.19
11.19
11.19
11.19
11.19
11.19
11.19
11.19
11.19
11.19
11.19
11.19
11.19
11.19
11.19
11.19
11.19
11.19
11.19
11.19
11.19
11.19
11.19
11.19
11.19
11.19
11.19
11.19
11.19
11.19
11.19
11.19
11.19
11.19
11.19
11.19
11.19
11.19
11.19
11.19
11.19
11.19
11.19
11.19
11.19
11.19
11.19
11.19
11.19
11.19
11.19
11.19
11.19
11.19
11.19
11.19
11.19
11.19
11.19
11.19
11.19
11.19
11.19
11.19
11.19
11.19
11.19
11.19
11.19
11.19
11.19
11.19
11.19
11.19
11.19
11.19
11.19
11.19
11.19
11.19
11.19
11.19
11.19
11.19
11.19
11.19
11.19
11.19
11.19
11.19
11.19
11.19
11.19
11.19
11.19
11.19
11.19
11.19
11.19
11.19
11.19
11.19
11.19
11.19
11.19
11.19
11.19
11.19
11.19
11.19
11.19
11.19
11.19
11.19
11.19
11.19
11.19
11.19
11.19
11.19
11.19
11.19
11.19
11.19
11.19
11.19
11.19
11.19
11.19
11.19
11.19
11.19
11.19
11.19
11.19
11.19
11.19
11.19
11.19
11.19
11.19
11.19
11.19
11.19
11.19
11.19
11.19
11.19
11.19
11.19
11.19
11.19
11.19
11.19
11.19
11.19
11.19
11.19
11.19
11.19
11.19
11.19
11.19
11.19
11.19
11.19
11.19
11.19
11.19
11.19
11.19
11.19
11.19
11.19
11.19
11.19
11.19
11.19
11.19
11.19
11.19
11.19
11.19
11.19
11.19
11.19
11.19
11.19
11.19
11.19
11.19
11.19
11.19
11 | 5.3
11.9
11.3
11.3
11.3
11.3
11.3
11.3
14.4
14.4
14.4
14.4
14.4
14.4
14.4
14.4
14.4
14.4
14.4
14.4
14.4
14.4
14.4
14.4
14.4
14.4
14.6
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
1 | 5.9 5.9 5.9 11.9 11.3 11.3 7.3 7.3 11.4 11.4 11.4 11.9 1.12.7 7 4.4 11.9 1.13.9 1.12.7 7 4.4 1.14.8 1.14.9 1.15.9 | 5.3 5.9 5.9 5.9 5.9 5.9 11.3 11.3 11.3 11.3 11.3 11.4 11.1 11.1
 | 5.7
5.9
5.9
5.9
5.9
5.9
5.9
5.9
5.9 | 95, 57, 53, 53, 53, 113, 113, 113, 113, 113, 1 | 5.2
5.3
5.3
5.3
5.3
5.3
5.3
5.3
5.3 | 7.2 7.2 8.8 9.5 9.5 9.5 1.1 9.5 1.1 9.5 1.1 9.5 1.1 9.6 1.1 9.7
1.1 9.7 1.1 9.7 1.1 9.7 1.1 9. |
|--|---|---|--
--	--	--
--	---	--
--	--	---
---	--	---
---	---	---
---	---	--
 | | |
 | | | un de la companya de |
 | | | |
 | | SI S | |
 | | | |
 | |
| | | | |
 | | |
 | | | un la companya di managara | 99
 | | | |
 | | | |
 | | | |
 | |
 | | |
 | | | un la companya di managara |
 | 90 | | | Si di Si
 | | | |
 | | | |
 | |
| | | | |
 | | |
 | | 17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17 | 17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17/200
17 | 1/200
1/200 1/200 1/200 1/200 1/200 1/200 1/200 1/200 1/200 1/200 1/200 1/200 1/200 1/200 1/200 1/200 1/200 | 1 yillin | 1/200 | 1/200 | 1 y dan 1 y da | 1/200
1/200 1/200 1/200 1/200 1/200 1/200 1/200 1/200 1/200 1/200 1/200 1/200 1/200 | 1/200 | 1/200 | 1 year 1 | 1/200 | 1/200
1/200 | 1/200 | 1 year 1 | 1 year 1 |
| 2 1/8n | 2 1/8n | 2 1/8h 2 | 2 1/8h 3 1/8h 3 1/8h | 2 1/8h 3 1/8h 3 1/8h 3 1/8h | 2 1/8h 2 | 2 1/8h 3
 | 2 1/8h 3 | 2 1/8h 2 | | | |
 | | |
 | | | |
 | | | |
 | |
| 2 1/8m 2 | 2 1/8m 2 | 2 1/8m 2 | 2 1/8m 2 1 | 2 1/8m 2 1 | 2 1/86 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 2 1/8m | 2 1/8m 2 | 2 1/8m 2 | | | | | | | | | | | | | | | | |
| 1/8h | 1/8h | 1/8h | 1/8h | 1/8h | 1/8h | 1/8h | 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 | 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 | | | | | | | | | | | | | | | | |
| 2 1/8h | 1/8n | 1 1 1 1 1 1 1 1 1 1 | 1/8n | 1 1 1 1 1 1 1 1 1 1 | 1 1 1 1 1 1 1 1 1 1
 | 1/8n | 1/8n | 1/8n | | |
 | | | |
 | | | |
 | | | |
 | |
| 0000000000 | 000000000000 | 000000000000000000000000000000000000000 | 000000000000000000000000000000000000000 | 000000000000000000000000000000000000000
 | 000000000000000000000000000000000000000 | |
 | | 000000000000000000000000000000000000000 | | 90 C C C C C C C C C C C C C C C C C C C
 | | 0 | 0 |
 | | | 0 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 | | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | | |
 | | |
| | | | |
 | | |
 | | | |
 | | | 0 |
 | | 000000000000000000000000000000000000000 | | 0
 | 0 | 0 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 | 0 | | | |
| | | | |
 | | |
 | | | |
 | | | |
 | | | |
 | | |
 | | |
| 0 2 2 2 2 2 2 2 2 | | | 0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
 | 0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
 | 0 | 2 | | 0 20 20 20 20 20 20 20 20 20 20 20 20 20
 | 0 20 20 20 20 20 20 20 20 20 20 20 20 20 | 8 38 38 38 38 38 38 38 38 38 38 38 38 38 | 0 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 | 9 X X X X X X X X X X X X X X X X X X X
 | 0 20 20 20 20 20 20 20 20 20 20 20 20 20 | 0 32 32 39 39 39 39 39 39 39 39 39 39 39 39 39 | 0 20 20 20 20 20 20 20 20 20 20 20 20 20 | 0 20 20 20 20 20 20 20 20 20 20 20 20 20
 | 0 30 30 30 30 30 30 30 30 30 30 30 30 30 | 0 30 30 30 30 30 30 30 30 30 30 30 30 30 | 0 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
 | 0 20 20 20 20 20 20 20 20 20 20 20 20 20 | 0 20 20 20 20 20 20 20 20 20 20 20 20 20 |
| x x x x x x x x | x x x x x x x x x x x x | 20 20 20 20 20 20 20 20 20 20 20 20 20 2 | 22 22 22 22 22 22 22 22 22 22 22 22 22 | 20 20 20 20 20 20 20 20 20 20 20 20 20 2
 | 3 | 30 30 30 30 30 30 30 30 30 30 30 30 30 3 | 20 <
 | 20 20 20 20 20 20 20 20 20 20 20 20 20 2 | 30 30 30 30 30 30 30 30 30 30 30 30 30 3 | 20 20 20 20 20 20 20 20 20 20 20 20 20 2 | 20 20 20 20 20 20 20 20 20 20 20 20 20 2
 | 20 20 20 20 20 20 20 20 20 20 20 20 20 2 | 20 20 20 20 20 20 20 20 20 20 20 20 20 2 | 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 | 30 30
 30 30 30 30 30 30 30 30 30< | 20 20 20 20 20 20 20 20 20 20 20 20 20 2 | 30 < | 20 20 20 20 20 20 20 20 20 20 20 20 20 2 | 20 20 20 20 20 20 20 20 20 20 20 20 20 2
 | 20 20 20 20 20 20 20 20 20 20 20 20 20 2 | 20 20 20 20 20 20 20 20 20 20 20 20 20 2 | 20 20 20 20 20 20 20 20 20 20 20 20 20 2
 | 20 20 20 20 20 20 20 20 20 20 20 20 20 2 | |
| 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | x x x x x x x x x | x x x x x x x x x x x | 20 20 20 20 20 20 20 20 20 20 20 20 | x x x x x x x x x x x x x x x x x x x
 | | | 2
 | 30 30 30 30 30 30 30 30 30 30 30 30 30 3 | | 29 27 28 28 28 28 28 28 28 28 28 28 28 28 28 | 20 20 20 20 20 20 20 20 20 20 20 20 20 2
 | 20 20 20 20 20 20 20 20 20 20 20 20 20 2 | 20 20 20 20 20 20 20 20 20 20 20 20 20 2 | 20 20 20 20 20 20 20 20 20 20 20 20 20 2 | 20 20 20 20 20 20 20 20 20 20 20 20 20 2
 | 20 20 20 20 20 20 20 20 20 20 20 20 20 2 | 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 | 20 20 20 20 20 20 20 20 20 20 20 20 20 2 | 20 20 20 20 20 20 20 20 20 20 20 20 20 2
 | 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 | 30 20 30< | 20 20 20 20 20 20 20 20 20 20 20 20 20 2
 | 20 20 20 20 20 20 20 20 20 20 20 20 20 2 | |
| 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | x x x x x x x x x | x x x x x x x x x x x | 2 2 2 2 2 2 2 2 2 2 2 2 | 20 20 20 20 20 20 20 20 20 20 20 20 20 2
 | xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx | x x x x x x x x x x x x x x x x x x x |
 | 30 30 30 30 30 30 30 30 30 30 30 30 30 3 | 20 20 20 20 20 20 20 20 20 20 20 20 20 2 | 30 30 30 30 30 30 30 30 30 30 30 30 30 3 | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
 | 30 30 30 30 30 30 30 30 | 20 20 20 20 20 20 20 20 20 20 20 20 20 2 | 20 20 20 20 20 20 20 20 20 20 20 20 20 2 | 3 5 5 C <td>30 30
30 <</td> <td>20 20 20 20 20 20 20 20 20 20 20 20 20 2</td> <td>20 20 20 20 20 20 20 20 20 20 20 20 20 2</td> <td>30 30<</td> <td>20 20 20 20 20 20 20 20 20 20 20 20 20 2</td> <td>20 20 20 20 20 20 20 20 20 20 20 20 20 2</td> <td>20 20 20 20 20 20 20 20 20 20 20 20 20 2</td> <td></td> <td></td> | 30 < | 20 20 20 20 20 20 20 20 20 20 20 20 20 2 | 20 20 20 20 20 20 20 20 20 20 20 20 20 2 | 30 30 30 30 30 30 30 30 30 30 30 30 30 30
30 30< | 20 20 20 20 20 20 20 20 20 20 20 20 20 2 | 20 20 20 20 20 20 20 20 20 20 20 20 20 2 | 20 20 20 20 20 20 20 20 20 20 20 20 20 2
 | | | | |
| | | | |
 | | |
 | | | |
 | | | |
 | | | |
 | | |
 | | |
| 0 1/8h
0 1/8h
0 1/8h
0 1/8h
0 1/8h
0 1/8h | 10 1/2m
10 | 2 1/8m
2 | 1 1/8m | 1 1/8h | 1,787
1,787
1,787
1,787
1,787
1,787
1,787
1,787
1,787
1,787
1,787
1,787
1,787
1,787
1,787
1,787
1,787
1,787
1,787
1,787
1,787
1,787
1,787
1,787
1,787
1,787
1,787
1,787
1,787
1,787
1,787
1,787
1,787
1,787
1,787
1,787
1,787
1,787
1,787
1,787
1,787
1,787
1,787
1,787
1,787
1,787
1,787
1,787
1,787
1,787
1,787
1,787
1,787
1,787
1,787
1,787
1,787
1,787
1,787
1,787
1,787
1,787
1,787
1,787
1,787
1,787
1,787
1,787
1,787
1,787
1,787
1,787
1,787
1,787
1,787
1,787
1,787
1,787
1,787
1,787
1,787
1,787
1,787
1,787
1,787
1,787
1,787
1,787
1,787
1,787
1,787
1,787
1,787
1,787
1,787
1,787
1,787
1,787
1,787
1,787
1,787
1,787
1,787
1,787
1,787
1,787
1,787
1,787
1,787
1,787
1,787
1,787
1,787
1,787
1,787
1,787
1,787
1,787
1,787
1,787
1,787
1,787
1,787
1,787
1,787
1,787
1,787
1,787
1,787
1,787
1,787
1,787
1,787
1,787
1,787
1,787
1,787
1,787
1,787
1,787
1,787
1,787
1,787
1,787
1,787
1,787
1,787
1,787
1,787
1,787
1,787
1,787
1,787
1,787
1,787
1,787
1,787
1,787
1,787
1,787
1,787
1,787
1,787
1,787
1,787
1,787
1,787
1,787
1,787
1,787
1,787
1,787
1,787
1,787
1,787
1,787
1,787
1,787
1,787
1,787
1,787
1,787
1,787
1,787
1,787
1,787
1,787
1,787
1,787
1,787
1,787
1,787
1,787
1,787
1,787
1,787
1,787
1,787
1,787
1,787
1,787
1,787
1,787
1,787
1,787
1,787
1,787
1,787
1,787
1,787
1,787
1,787
1,787
1,787
1,787
1,787
1,787
1,787
1,787
1,787
1,787
1,787
1,787
1,787
1,787
1,787
1,787
1,787
1,787
1,787
1,787
1,787
1,787
1,787
1,787
1,787
1,787
1,787
1,787
1,787
1,787
1,787
1,787
1,787
1,787
1,787
1,787
1,787
1,787
1,787
1,787
1,787
1,787
1,787
1,787
1,787
1,787
1,787
1,787
1,787
1,787
1,787
1,787
1,787
1,787
1,787
1,787
1,787
1,787
1,787
1,787
1,787
1,787
1,787
1,787
1,787
1,787
1,787
1,787
1,787
1,787
1,787
1,787
1,787
1,787
1,787
1,787
1,787
1,787
1,787
1,787
1,787
1, | 1 1 1 1 1 1 1 1 1 1
 | 1 | 1,000 1,00 | |
 | | |
 | | | |
 | | | |
 | | | |
| 2 1/8n
2 1/8n
2 1/8n
2 1/8n
2 1/8n | 1 1/8n 1 | 1 1/8m 1 | 1,000 | 1 1/8m 1/8m 1/8m 1/8m 1/8m 1/8m 1/8m 1/8 | 1 1/8m 1/8 | 2 1/8h 2 | 1 1/8h 2 1/8h 3 1/8h 3 1/8h 3 1/8h 3 1/8h 3 1/8h 3 1/8h
 | 1 1/8m 1/8m 1/8m 1/8m 1/8m 1/8m 1/8m 1/8 | | | |
 | | |
 | | | |
 | | | |
 | | |
| | | | |
 | | |
 | | 1788 1788 1788 1788 1788 1788 1788 1788 | 1788 1788 1788 1788 1788 1788 1788 1788 | 7,760 1,760
1,760 1,760 1,760 1,760 1,760 1,760 1,760 1,760 1,760 1,760 1,760 1,760 1,760 1,760 1,760 1,760 1,760 | 1 yilan 1 yila | 7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7, | 7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7, |
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780 | 7,78% | 7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7, |
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786
7,786 | 1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780 | 1,780 | 7,78%
7,78% | 1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786
1,786 | 1/200 | 1,780 |
| | | | |
 | | |
 | | 1780
1780
1780
1780
1780
1780
1780
1780 | 1780
1780
1780
1780
1780
1780
1780
1780 | 7/8h 7/8h 7/8h 7/8h 7/8h 7/8h 7/8h 7/8h
 | 7/8h 7/8h 7/8h 7/8h 7/8h 7/8h 7/8h 7/8h | 7/8n 7/8n 7/8n 7/8n 7/8n 7/8n 7/8n 7/8n | 7/8n 7/8n 7/8n 7/8n 7/8n 7/8n 7/8n 7/8n | 7/8h 7/8h 7/8h 7/8h 7/8h 7/8h 7/8h 7/8h
 | 7,4% 7,4% 7,4% 7,4% 7,4% 7,4% 7,4% 7,4% | 7/8n 7/8n 7/8n 7/8n 7/8n 7/8n 7/8n 7/8n | 7/8h 7/8h 7/8h 7/8h 7/8h 7/8h 7/8h 7/8h | 7/8h 7/8h 7/8h 7/8h 7/8h 7/8h 7/8h 7/8h
 | 7/8h 7/8h 7/8h 7/8h 7/8h 7/8h 7/8h 7/8h | 7/8n 7/8n 7/8n 7/8n 7/8n 7/8n 7/8n 7/8n | 7/8n 7/8n 7/8n 7/8n 7/8n 7/8n 7/8n 7/8n
 | 7/8n 7/8n 7/8n 7/8n 7/8n 7/8n 7/8n 7/8n | 7/8h 7/8h 7/8h 7/8h 7/8h 7/8h 7/8h 7/8h | | |
| | | | |
 | | |
 | | 1780
1780
1780
1780
1780
1780
1780
1780 | 1789
1789
1789
1789
1789
1789
1789
1789 | 7/8n 7/8n 7/8n 7/8n 7/8n 7/8n 7/8n 7/8n
 | 7/8n 7/8n 7/8n 7/8n 7/8n 7/8n 7/8n 7/8n | 7/8n 7/8n 7/8n 7/8n 7/8n 7/8n 7/8n 7/8n | 7/8n 7/8n 7/8n 7/8n 7/8n 7/8n 7/8n 7/8n | 7,4% 7,4% 7,4% 7,4% 7,4% 7,4% 7,4% 7,4%
 | 7/8n 7/8n 7/8n 7/8n 7/8n 7/8n 7/8n 7/8n | 7/8n 7/8n 7/8n 7/8n 7/8n 7/8n 7/8n 7/8n | 7/8% 7/8% 7/8% 7/8% 7/8% 7/8% 7/8% 7/8% | 7,4% 7,4% 7,4% 7,4% 7,4% 7,4% 7,4% 7,4%
 | 7/8n 7/8n 7/8n 7/8n 7/8n 7/8n 7/8n 7/8n | 7/8n 7/8n 7/8n 7/8n 7/8n 7/8n 7/8n 7/8n | 7/8% 7/8% 7/8% 7/8% 7/8% 7/8% 7/8% 7/8%
 | 7/80 1/80 1/80 1/80 1/80 1/80 1/80 1/80 1 | 7/8n 7/8n 7/8n 7/8n 7/8n 7/8n 7/8n 7/8n |
| 1 year 1 | 1,700 | 1/201 1/20 | 1,78n | 1,760
1,760
1,760
1,760
1,760
1,760
1,760
1,760
1,760
1,760
1,760
1,760
1,760
1,760
1,760
1,760
1,760
1,760
1,760
1,760
1,760
1,760
1,760
1,760
1,760
1,760
1,760
1,760
1,760
1,760
1,760
1,760
1,760
1,760
1,760
1,760
1,760
1,760
1,760
1,760
1,760
1,760
1,760
1,760
1,760
1,760
1,760
1,760
1,760
1,760
1,760
1,760
1,760
1,760
1,760
1,760
1,760
1,760
1,760
1,760
1,760
1,760
1,760
1,760
1,760
1,760
1,760
1,760
1,760
1,760
1,760
1,760
1,760
1,760
1,760
1,760
1,760
1,760
1,760
1,760
1,760
1,760
1,760
1,760
1,760
1,760
1,760
1,760
1,760
1,760
1,760
1,760
1,760
1,760
1,760
1,760
1,760
1,760
1,760
1,760
1,760
1,760
1,760
1,760
1,760
1,760
1,760
1,760
1,760
1,760
1,760
1,760
1,760
1,760
1,760
1,760
1,760
1,760
1,760
1,760
1,760
1,760
1,760
1,760
1,760
1,760
1,760
1,760
1,760
1,760
1,760
1,760
1,760
1,760
1,760
1,760
1,760
1,760
1,760
1,760
1,760
1,760
1,760
1,760
1,760
1,760
1,760
1,760
1,760
1,760
1,760
1,760
1,760
1,760
1,760
1,760
1,760
1,760
1,760
1,760
1,760
1,760
1,760
1,760
1,760
1,760
1,760
1,760
1,760
1,760
1,760
1,760
1,760
1,760
1,760
1,760
1,760
1,760
1,760
1,760
1,760
1,760
1,760
1,760
1,760
1,760
1,760
1,760
1,760
1,760
1,760
1,760
1,760
1,760
1,760
1,760
1,760
1,760
1,760
1,760
1,760
1,760
1,760
1,760
1,760
1,760
1,760
1,760
1,760
1,760
1,760
1,760
1,760
1,760
1,760
1,760
1,760
1,760
1,760
1,760
1,760
1,760
1,760
1,760
1,760
1,760
1,760
1,760
1,760
1,760
1,760
1,760
1,760
1,760
1,760
1,760
1,760
1,760
1,760
1,760
1,760
1,760
1,760
1,760
1,760
1,760
1,760
1,760
1,760
1,760
1,760
1,760
1,760
1,760
1,760
1,760
1,760
1,760
1,760
1,760
1,760
1,760
1,760
1,760
1,760
1,760
1,760
1,760
1,760
1,760
1,760
1,760
1,760
1,760
1,760
1,760
1,760
1,760
1,760
1,760
1,760
1,760
1,760
1,760
1,760
1,760
1,760
1,760
1,760
1,760
1,760
1,760
1, | 1 year 1 year 1 year 2 year 1 year 2 |
 | | | | 4 ug/L | 2
 | 1,78n | 4 | 1,78n
 | 1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780
1,780 | 1,78n | 1 Jan | 1,78n 1,78n 1,78n 1,78n 1,78n 1,78n 1,78n 1,78n | 1,78n 1,78n 1,78n 1,78n 1,78n 1,78n 1,78n
 | 1/8n
1/8n
1/8n
1/8n | n8/r
n8/r
n8/r | 7.4 ug/L 0 | 7.4 ug/L
 | |
| | 9 | 9 | va . |
 | Jo | <u>a </u> | <u>4 4 7 7 3 7 7 4 3 7 7 7 3 3 6 3 6 3 7 7 7 6 6 7 7 8 3 6 6 6 6 7 7 7 6 6 7 7 8 3 6 6 6 6 7 7 7 7 6 6 7 7 7 8 3 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7</u>
 | <u> </u> | V W V P A W V V V W W W W W W V V W W W W W W W | N |
 | | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | |
 | | | |
 | | | 6 ug/t 6.3 ug/t 7.4 ug/t ug/t 0.2 ug/t
 | 6 ug/L 6.3 ug/L 7.4 ug/L | 6 ug/L |

Table A-4. Summary of 2009 Sample Results Qualified Because of Method Blank, Preparation Blank or Field Blank Contamination

			Value Reported (AFTER					
Sample ID	Analyte Name	Value Reported		NAME OF TAXABLE PARTY.	Lab Qualifier	Validation Qualifier	METHOD_NAME	Reason
1YK06	Carbon tetrachloride	1.6		ug/L	J	U		Flagged with a U; ≥ MDL but ≤ PQL
1YK13	Carbon tetrachloride	2		ug/L	J	U	8260_VOA_GCMS	Flagged with a U; ≥ MDL but ≤ PQL
1Y7F5	Copper	7.6		U,	В	U		PQL not provided by lab; result flagged with a "U" at the reported conc
20Y89	Copper	4.1		-	BC	U		PQL not provided by lab; result flagged with a "U" at the reported conc
20Y90	Copper	4.4		0,	BC	U	6010_METALS_ICP	PQL not provided by lab; result flagged with a "U" at the reported conc
1Y6N8	Iron	143		ug/L		J+	6010_METALS_ICP	Estimated high "J+"; > PQL but < 10x the blank result
1Y6R4	Iron	82.1		ug/L		U	6010_METALS_ICP	Flagged with a U; ≥ MDL but ≤ PQL
1Y6T8	Iron	28.4	120		В	U		Flagged with a U; ≥ MDL but ≤ PQL
1Y6T9	Iron	28.7	120		В	U		Flagged with a U; ≥ MDL but ≤ PQL
1Y6Y6	Iron	34.5	120		В	U		Flagged with a U; ≥ MDL but ≤ PQL
1Y711	Iron	53	120		В	U		Flagged with a U; ≥ MDL but ≤ PQL
1Y725	Iron	41.2	120		В	U		Flagged with a U; ≥ MDL but ≤ PQL
1YV26	Iron	79		<u> </u>	BC	UJ		PQL not provided by lab; result flagged with a "U" at the reported conc
1YV27	Iron	68.4			BC	U		PQL not provided by lab; result flagged with a "U" at the reported conc
1YV30	Iron	73.2		0,	BC	U		PQL not provided by lab; result flagged with a "U" at the reported conc
1YV31	Iron	73.2			BC	UJ		PQL not provided by lab; result flagged with a "U" at the reported conc
1YV33	Iron	26.8			BC	U		PQL not provided by lab; result flagged with a "U" at the reported conc
1YW59	Iron	20.5		-	BC	U		PQL not provided by lab; result flagged with a "U" at the reported conc
1YW69	Iron	21.8		0,	BC	U		PQL not provided by lab; result flagged with a "U" at the reported conc
1YXP5	Iron	27.8		O,	BC	U		PQL not provided by lab; result flagged with a "U" at the reported conc
1YXP6	Iron	24.6		ug/L	BC	U		PQL not provided by lab; result flagged with a "U" at the reported conc
20455	Iron	164		0/ -	С	J+	6010_METALS_ICP	Estimated high "J+"; > PQL but < 10x the blank result
20461	Iron	19.2		Ů,	BC	U	6010_METALS_ICP	PQL not provided by lab; result flagged with a "U" at the reported conc
20Y90	Iron	42.6		ug/L	BC	U	6010_METALS_ICP	PQL not provided by lab; result flagged with a "U" at the reported conc
210P2	Iron	20.3		ug/L	BC	U	6010_METALS_ICP	PQL not provided by lab; result flagged with a "U" at the reported conc
210P6	Iron	36.6		ug/L	BC	U	6010_METALS_ICP	PQL not provided by lab; result flagged with a "U" at the reported conc
210P9	Iron	25		ug/L	BC	U	6010_METALS_ICP	PQL not provided by lab; result flagged with a "U" at the reported conc
210R0	Iron	28.4		ug/L	BC	U	6010_METALS_ICP	PQL not provided by lab; result flagged with a "U" at the reported conc
210R7	Iron	26.3	4	ug/L	BC	U	6010_METALS_ICP	PQL not provided by lab; result flagged with a "U" at the reported conc
210R8	Iron	53.5		ug/L	BC	U	6010_METALS_ICP	PQL not provided by lab; result flagged with a "U" at the reported conc
210T1	Iron	71.4		ug/L	BC	U	6010_METALS_ICP	PQL not provided by lab; result flagged with a "U" at the reported conc
210T2	Iron	74.3		ug/L	BC	U	6010_METALS_ICP	PQL not provided by lab; result flagged with a "U" at the reported conc
210T5	Iron	22.4		ug/L	BC	U	6010_METALS_ICP	PQL not provided by lab; result flagged with a "U" at the reported conc
210T6	Iron	44.8		ug/L	BC	U	6010_METALS_ICP	PQL not provided by lab; result flagged with a "U" at the reported conc
210T9	Iron	56.6		ug/L	BC	U	6010_METALS_ICP	PQL not provided by lab; result flagged with a "U" at the reported conc
210V0	Iron	52.4		ug/L	ВС	U	6010_METALS_ICP	PQL not provided by lab; result flagged with a "U" at the reported conc
210V3	Iron	22.9		ug/L	BC	U	6010_METALS_ICP	PQL not provided by lab; result flagged with a "U" at the reported conc
224C6	Iron	20.6		ug/L	BC	U		PQL not provided by lab; result flagged with a "U" at the reported conc
224C7	Iron	38.7		ug/L	BC	U	6010_METALS_ICP	PQL not provided by lab; result flagged with a "U" at the reported conc
224D5	Iron	35.3		ug/L	BC	U	6010_METALS_ICP	PQL not provided by lab; result flagged with a "U" at the reported conc
224D6	Iron	37.1		ug/L	BC	U	6010_METALS_ICP	PQL not provided by lab; result flagged with a "U" at the reported conc
224F0	Iron	23.7		ug/L	BC	U	6010_METALS_ICP	PQL not provided by lab; result flagged with a "U" at the reported conc
224F1	Iron	56.2		ug/L	BC	U	6010_METALS_ICP	PQL not provided by lab; result flagged with a "U" at the reported conc
224J0	Iron	29.1			ВС	U		PQL not provided by lab; result flagged with a "U" at the reported conc
224J5	Iron	42.6			ВС	U		PQL not provided by lab; result flagged with a "U" at the reported conc
224J6	Iron	42.3		<u> </u>	ВС	U		PQL not provided by lab; result flagged with a "U" at the reported conc
224K1	Iron	72		_	BC	U		PQL not provided by lab; result flagged with a "U" at the reported conc

Table A-4. Summary of 2009 Sample Results Qualified Because of Method Blank, Preparation Blank or Field Blank Contamination

			Value Reported (AFTER					
Sample ID	Analyte Name	Value Reported	VALIDATION)	Units	Lab Qualifier	Validation Qualifier	METHOD_NAME	Reason
B224K2	Iron	34.8		ug/L	BC	U	6010_METALS_ICP	PQL not provided by lab; result flagged with a "U" at the reported conc
B224K4	Iron	56		ug/L	BC	U	6010_METALS_ICP	PQL not provided by lab; result flagged with a "U" at the reported conc
B224K5	Iron	30.2		ug/L	BC	U	6010_METALS_ICP	PQL not provided by lab; result flagged with a "U" at the reported conc
B20452	Nickel	4		ug/L	В	U	6010_METALS_ICP	PQL not provided by lab; result flagged with a "U" at the reported conc
B205W1	Nickel	15.3		ug/L	В	U	6010_METALS_ICP	PQL not provided by lab; result flagged with a "U" at the reported conc
B205W2	Nickel	16.1		ug/L	В	U	6010_METALS_ICP	PQL not provided by lab; result flagged with a "U" at the reported conc
B205Y0	Nickel	6.8		ug/L	В	U	6010_METALS_ICP	PQL not provided by lab; result flagged with a "U" at the reported conc
B205Y1	Nickel	6.1		ug/L	В	U	6010_METALS_ICP	PQL not provided by lab; result flagged with a "U" at the reported conc
B1Y6N7	Silver	7	25	ug/L	BC	U	6010_METALS_ICP	Flagged with a U; ≥ MDL but ≤ PQL

Table A-5. Summary of 2010 Sample Results Qualified Because of Method Blank, Preparation Blank or Field Blank Contamination

Sample ID	Analyte Name	Value Reported	Value Reported (AFTER VALIDATION)	Units	Lab Qualifier	Validation Qualifier	METHOD NAME	Reason
Janipie ID	Analyte Name	перопец	(ALTER VALIDATION)	Offics	Lab Qualifier	validation qualifier	WETTOD_NAME	Rejected; Method blank has greater than 2X the PQL (2 ug/l) (15 ug/L) which i
								greater than acceptance criteria. Sample results are slightly less than 2X the
323FK2	Acetone	180	u	g/L	В	R	8260 VOA GCMS	MB contamination.
326MD6	Acetone	0.4	2 u		JB	U	8260 VOA GCMS	Flagged with a U; ≥ MDL but ≤ PQL
324∐8	Aluminum	169		g/L	С	J+	6010_METALS_ICP	Estimated high "J+"; > PQL but < 10x the blank result
326575	Aluminum	271	u	g/L	С	J+	6010_METALS_ICP	Estimated high "J+"; > PQL but < 10x the blank result
3265L3	Aluminum	246	u	g/L	С	J+	6010_METALS_ICP	Estimated high "J+"; > PQL but < 10x the blank result
324⊔7	Arsenic	70	u	g/L	BC	R	6010_METALS_ICP	Rejected result; gross contamination
326751	Arsenic	2.2	u	g/L	BD	U	200.8_METALS_ICPMS	PQL not provided by lab; result flagged with a "U" at the reported conc
326752	Arsenic	2.38	u	g/L	BD	U	200.8_METALS_ICPMS	PQL not provided by lab; result flagged with a "U" at the reported conc
326755	Arsenic	5.99	u	g/L	BD	U	200.8_METALS_ICPMS	PQL not provided by lab; result flagged with a "U" at the reported conc
326756	Arsenic	6.52		g/L	BD	U	200.8_METALS_ICPMS	PQL not provided by lab; result flagged with a "U" at the reported conc
326759	Arsenic	7.04		g/L	BD	U	200.8_METALS_ICPMS	PQL not provided by lab; result flagged with a "U" at the reported conc
26760	Arsenic	6.68		g/L	BD	U	200.8_METALS_ICPMS	PQL not provided by lab; result flagged with a "U" at the reported conc
26763	Arsenic	3.61		g/L	BD	U	200.8_METALS_ICPMS	PQL not provided by lab; result flagged with a "U" at the reported conc
326764	Arsenic	4.28		g/L	BD	U	200.8_METALS_ICPMS	PQL not provided by lab; result flagged with a "U" at the reported conc
326MK0	Arsenic	5.83		g/L	BD	U	200.8_METALS_ICPMS	PQL not provided by lab; result flagged with a "U" at the reported conc
326MK1	Arsenic	7.2		g/L	BD	U	200.8_METALS_ICPMS	PQL not provided by lab; result flagged with a "U" at the reported conc
326MK0	Barium	50.5		g/L	DN	J+ I+	200.8_METALS_ICPMS	Estimated high "J+"; > PQL but < 10x the blank result
326MK1	Barium	23.3 24.4		g/L	DN BC	J+	200.8_METALS_ICPMS 6010_METALS_ICP	Estimated high "J+"; > PQL but < 10x the blank result
324M43 326634	Bismuth	31		g/L	BC	0	6010_METALS_ICP	PQL not provided by lab; result flagged with a "U" at the reported conc PQL not provided by lab; result flagged with a "U" at the reported conc
325M49	Bismuth Boron	24		g/L g/L	BC	li	6010_METALS_ICP	PQL not provided by lab; result flagged with a "U" at the reported conc
325M50	Boron	35		g/L	BC	II	6010_METALS_ICP	PQL not provided by lab; result flagged with a "U" at the reported conc
265N7	Boron	23		g/L	BC	II	6010_METALS_ICP	PQL not provided by lab; result flagged with a "U" at the reported conc
26544	Bromomethane	0.39	2 u		JB	11	8260 VOA GCMS	Flagged with a U; ≥ MDL but ≤ PQL
26567	Bromomethane	0.33	2 u		JB	II	8260_VOA_GCMS	Flagged with a U; ≥ MDL but ≤ PQL
26MD1	Bromomethane	0.42	2 u		JB	11	8260_VOA_GCMS	Flagged with a U; ≥ MDL but ≤ PQL
326MD6	Bromomethane	0.34	2 u		JB	II.	8260 VOA GCMS	Flagged with a U; ≥ MDL but ≤ PQL
326MF1	Bromomethane	0.34	2 u	0.	JB	U	8260 VOA GCMS	Flagged with a U; ≥ MDL but ≤ PQL
327WL9	Bromomethane	0.49	2 u		JBT	U	8260 VOA GCMS	Flagged with a U; ≥ MDL but ≤ PQL
327WN1	Bromomethane	0.47	2 u		JBT	U	8260_VOA_GCMS	Flagged with a U; ≥ MDL but ≤ PQL
327WN7	Bromomethane	0.42	2 u		JBT	U	8260 VOA GCMS	Flagged with a U; ≥ MDL but ≤ PQL
327WP8	Bromomethane	0.47	2 u		JBT	U	8260_VOA_GCMS	Flagged with a U; ≥ MDL but ≤ PQL
327WR4	Bromomethane	0.56	2 u	g/L	JBT	U	8260_VOA_GCMS	Flagged with a U; ≥ MDL but ≤ PQL
327WT1	Bromomethane	0.7	2 u	g/L	JBT	U	8260_VOA_GCMS	Flagged with a U; ≥ MDL but ≤ PQL
327WV2	Bromomethane	0.47	1 u	g/L	JBT	U	8260_VOA_GCMS	Flagged with a U; ≥ MDL but ≤ PQL
327WV3	Bromomethane	0.48	2 u	g/L	JBT	U	8260_VOA_GCMS	Flagged with a U; ≥ MDL but ≤ PQL
327WW9	Bromomethane	0.62	2 u	g/L	JBT	U	8260_VOA_GCMS	Flagged with a U; ≥ MDL but ≤ PQL
27WX9	Bromomethane	0.6	2 u	g/L	JBT	U	8260_VOA_GCMS	Flagged with a U; ≥ MDL but ≤ PQL
27WY6	Bromomethane	0.36	2 u	0.	JBT	U	8260_VOA_GCMS	Flagged with a U; ≥ MDL but ≤ PQL
27X23	Bromomethane	0.83	2 u		JBT	U	8260_VOA_GCMS	Flagged with a U; ≥ MDL but ≤ PQL
27X29	Bromomethane	0.56	2 u		JBT	U	8260_VOA_GCMS	Flagged with a U; ≥ MDL but ≤ PQL
27XC9	Bromomethane	0.53	2 u	•	JBT	U	8260_VOA_GCMS	Flagged with a U; ≥ MDL but ≤ PQL
27XF1	Bromomethane	0.44		g/L	JBT	U	8260_VOA_GCMS	Flagged with a U; ≥ MDL but ≤ PQL
286V0	Bromomethane	0.62	2 u		JB	U	8260_VOA_GCMS	Flagged with a U; ≥ MDL but ≤ PQL
286V0	Carbon disulfide	0.074	1 u		JB	U	8260_VOA_GCMS	Flagged with a U; ≥ MDL but ≤ PQL
286V4 26P99	Carbon disulfide Chloride	0.06 15.9	1 u		JB D	U I+	8260_VOA_GCMS	Flagged with a U; ≥ MDL but ≤ PQL
W103 000	PSD 470300 DRV550	0.503300		g/mL		**	300.0_ANIONS_IC	Estimated high "J+"; > PQL but < 10x the blank result
285V5	Chloride Chloride	13.4		g/mL	D	J+ I+	300.0_ANIONS_IC	Estimated high "J+"; > PQL but < 10x the blank result
285V8 26579	Chloroform	16.6 0.11		g/mL	ı	J+ II	300.0_ANIONS_IC 8260 VOA GCMS	Estimated high "J+"; > PQL but < 10x the blank result
265L2	Chloroform	0.11		g/L g/L	ı	11	8260_VOA_GCMS	Flagged with a U; ≥ MDL but ≤ PQL Flagged with a U; ≥ MDL but ≤ PQL
26544	Chloromethane	0.14	2 u		JB	II	8260_VOA_GCMS	Flagged with a U; ≥ MDL but ≤ PQL Flagged with a U; ≥ MDL but ≤ PQL
26567	Chloromethane	0.28	2 u		JB JB	11	8260_VOA_GCMS	Flagged with a U; ≥ MDL but ≤ PQL Flagged with a U; ≥ MDL but ≤ PQL
26367 26M91	Chloromethane	0.19	2 u		JB	11	8260 VOA GCMS	Flagged with a U; ≥ MDL but ≤ PQL
26M96	Chloromethane	0.22	2 u		JB	II	8260_VOA_GCMS	Flagged with a U; ≥ MDL but ≤ PQL
26MB1	Chloromethane	0.18	2 u		JB	II.	8260 VOA GCMS	Flagged with a U; ≥ MDL but ≤ PQL
26MD1	Chloromethane	0.18	2 u		JB	II	8260_VOA_GCMS	Flagged with a U; ≥ MDL but ≤ PQL
26MD6	Chloromethane	0.28	2 u		JB	U	8260 VOA GCMS	Flagged with a U; ≥ MDL but ≤ PQL
26MF1	Chloromethane	0.29	2 u		JB	U	8260 VOA GCMS	Flagged with a U; ≥ MDL but ≤ PQL
		0.16	2 u			i.	8260 VOA GCMS	Flagged with a U; ≥ MDL but ≤ PQL

Table A-5. Summary of 2010 Sample Results Qualified Because of Method Blank, Preparation Blank or Field Blank Contamination

6 1 10		Value	Value Reported	110 15	W.F.L. C. P.C.	METHOD MANY	D. C.
Sample ID	Analyte Name	Reported	(AFTER VALIDATION) Units	Lab Qualifier	Validation Qualifier	METHOD_NAME	Reason
327WL9	Chloromethane	0.49	2 ug/L	JB	U III	8260_VOA_GCMS	Flagged with a U; ≥ MDL but ≤ PQL
27WN1	Chloromethane	0.46	2 ug/L	JB	0	8260_VOA_GCMS	Flagged with a U; ≥ MDL but ≤ PQL
27WN7	Chloromethane	0.49	2 ug/L	JB	U	8260_VOA_GCMS	Flagged with a U; ≥ MDL but ≤ PQL
27WP8	Chloromethane	0.51	2 ug/L	JB	U	8260_VOA_GCMS	Flagged with a U; ≥ MDL but ≤ PQL
27WR4	Chloromethane	0.55	2 ug/L	JB	U	8260_VOA_GCMS	Flagged with a U; ≥ MDL but ≤ PQL
27WV3	Chloromethane	0.54	2 ug/L	JB	U	8260_VOA_GCMS	Flagged with a U; ≥ MDL but ≤ PQL
27WW9	Chloromethane	0.45	2 ug/L	JB	U	8260_VOA_GCMS	Flagged with a U; ≥ MDL but ≤ PQL
27WX9	Chloromethane	0.66	2 ug/L	JB	U	8260_VOA_GCMS	Flagged with a U; ≥ MDL but ≤ PQL
27WY6	Chloromethane	0.45	2 ug/L	JB	U	8260_VOA_GCMS	Flagged with a U; ≥ MDL but ≤ PQL
27X23	Chloromethane	0.68	2 ug/L	JB	U	8260_VOA_GCMS	Flagged with a U; ≥ MDL but ≤ PQL
27X29	Chloromethane	0.53	2 ug/L	JB	U	8260_VOA_GCMS	Flagged with a U; ≥ MDL but ≤ PQL
27XC9	Chloromethane	0.58	2 ug/L	JB	U	8260_VOA_GCMS	Flagged with a U; ≥ MDL but ≤ PQL
27XF1	Chloromethane	0.48	2 ug/L	JB	U	8260_VOA_GCMS	Flagged with a U; ≥ MDL but ≤ PQL
286V0	Chloromethane	0.21	2 ug/L	JB	U	8260_VOA_GCMS	Flagged with a U; ≥ MDL but ≤ PQL
286V4	Chloromethane	0.19	2 ug/L	JB	U	8260 VOA GCMS	Flagged with a U; ≥ MDL but ≤ PQL
26924	Chromium	13		ВС	U	6010_METALS_ICP	PQL not provided by lab; result flagged with a "U" at the reported conc
26925	Chromium	15	ug/L	В	U	6010 METALS ICP	PQL not provided by lab; result flagged with a "U" at the reported conc
26MK0	Chromium	4.51	ug/L	BDC	U	200.8 METALS ICPMS	PQL not provided by lab; result flagged with a "U" at the reported conc
26MK1	Chromium	1.65	ug/L	BDC	U	200.8 METALS ICPMS	PQL not provided by lab; result flagged with a "U" at the reported conc
284F5	Cobalt	1.03	ug/L	BC	U	6010 METALS ICP	PQL not provided by lab; result flagged with a "U" at the reported conc
284F6	Cobalt	1	ug/L	BC	U	6010_METALS_ICP	PQL not provided by lab; result flagged with a "U" at the reported conc
22YP4	Copper	9.1	ug/L	BC	lii	6010 METALS ICP	PQL not provided by lab; result flagged with a "U" at the reported conc
25M79		5.1		BC	III	6010_METALS_ICP	PQL not provided by lab; result flagged with a "U" at the reported conc
	Copper	3	ug/L	BC	U		
25NV0	Copper	4	₩6/ E		•	6010_METALS_ICP	PQL not provided by lab; result flagged with a "U" at the reported conc
25NV2	Copper	5	ug/L	BC	U	6010_METALS_ICP	PQL not provided by lab; result flagged with a "U" at the reported conc
25NV3	Copper	7	ug/L	BC	U	6010_METALS_ICP	PQL not provided by lab; result flagged with a "U" at the reported conc
25NV5	Copper	5	-0/-	BC	U	6010_METALS_ICP	PQL not provided by lab; result flagged with a "U" at the reported conc
26546	Copper	0.306	ug/L	BD	U	200.8_METALS_ICPMS	PQL not provided by lab; result flagged with a "U" at the reported conc
26569	Copper	0.888	ug/L	BD	U	200.8_METALS_ICPMS	PQL not provided by lab; result flagged with a "U" at the reported conc
26MC2	Copper	9	ug/L	BC	U	6010_METALS_ICP	PQL not provided by lab; result flagged with a "U" at the reported conc
26MC3	Copper	10	ug/L	BC	U	6010_METALS_ICP	PQL not provided by lab; result flagged with a "U" at the reported conc
26MJ5	Copper	0.33	ug/L	BDC	U	200.8_METALS_ICPMS	PQL not provided by lab; result flagged with a "U" at the reported conc
26MJ6	Copper	0.252	ug/L	BDC	U	200.8_METALS_ICPMS	PQL not provided by lab; result flagged with a "U" at the reported conc
26MK0	Copper	0.815	ug/L	BDC	U	200.8_METALS_ICPMS	PQL not provided by lab; result flagged with a "U" at the reported conc
26MK1	Copper	0.73	ug/L	BDC	U	200.8_METALS_ICPMS	PQL not provided by lab; result flagged with a "U" at the reported conc
26MK9	Copper	0.348	ug/L	BDC	U	200.8_METALS_ICPMS	PQL not provided by lab; result flagged with a "U" at the reported conc
26ML0	Copper	0.541	ug/L	BDC	U	200.8 METALS ICPMS	PQL not provided by lab; result flagged with a "U" at the reported conc
27WM0	Copper	6	ug/L	ВС	U	6010 METALS ICP	PQL not provided by lab; result flagged with a "U" at the reported conc
29VW0	Copper	11		ВС	U	6010 METALS ICP	PQL not provided by lab; result flagged with a "U" at the reported conc
23DM3	Fluoride	0.302	ug/mL	BD	U	300.0 ANIONS IC	PQL not provided by lab; result flagged with a "U" at the reported conc
23FF6	Fluoride	0.136	ug/mL	BD	U	300.0 ANIONS IC	PQL not provided by lab; result flagged with a "U" at the reported conc
23FK4	Fluoride	0.191	ug/mL	BD	II.	300.0 ANIONS IC	PQL not provided by lab; result flagged with a "U" at the reported conc
23J95	Fluoride	0.151	ug/mL	BD	II.	300.0 ANIONS IC	PQL not provided by lab; result flagged with a "U" at the reported conc
23193	Fluoride	0.234	ug/mL	BD	11	300.0_ANIONS_IC	PQL not provided by lab; result flagged with a "U" at the reported conc
23JB6	Fluoride	0.32	ug/mL ug/mL	BD	0	300.0_ANIONS_IC	
					U		PQL not provided by lab; result flagged with a "U" at the reported conc
26P99	Fluoride	0.226	ug/mL	BD	U	300.0_ANIONS_IC	PQL not provided by lab; result flagged with a "U" at the reported conc
27X23	Iodomethane	0.48	2 ug/L	JBT	O .	8260_VOA_GCMS	Flagged with a U; ≥ MDL but ≤ PQL
286V0	Iodomethane	0.88	2 ug/L	JBT	U	8260_VOA_GCMS	Flagged with a U; ≥ MDL but ≤ PQL
286V4	Iodomethane	0.83	2 ug/L	JBT	U	8260_VOA_GCMS	Flagged with a U; ≥ MDL but ≤ PQL
22YP4	Iron	41.8	ug/L	BC	U	6010_METALS_ICP	PQL not provided by lab; result flagged with a "U" at the reported conc
22YT6	Iron	24.8	ug/L	BC	U	6010_METALS_ICP	PQL not provided by lab; result flagged with a "U" at the reported conc
22YT7	Iron	34.9	ug/L	BC	U	6010_METALS_ICP	PQL not provided by lab; result flagged with a "U" at the reported conc
22YV1	Iron	60.3	ug/L	BC	U	6010_METALS_ICP	PQL not provided by lab; result flagged with a "U" at the reported conc
22YV5	Iron	65.5	ug/L	BC	U	6010_METALS_ICP	PQL not provided by lab; result flagged with a "U" at the reported conc
22YX1	Iron	20.9	ug/L	BC	U	6010_METALS_ICP	PQL not provided by lab; result flagged with a "U" at the reported conc
23FF8	Iron	39.9	ug/L	В	U	6010_METALS_ICP	PQL not provided by lab; result flagged with a "U" at the reported conc
23FK6	Iron	30		В	U	6010_METALS_ICP	PQL not provided by lab; result flagged with a "U" at the reported conc
24MP2	Iron	52.2		ВС	U	6010_METALS_ICP	PQL not provided by lab; result flagged with a "U" at the reported conc
24MP3	Iron	46.1	ug/L	BC	U	6010 METALS ICP	PQL not provided by lab; result flagged with a "U" at the reported conc
24MT3	Iron	169	ug/L	C	J+	6010 METALS ICP	Estimated high "J+"; > PQL but < 10x the blank result
24MV4	Iron	155	ug/L	C	J+	6010 METALS ICP	Estimated high "J+"; > PQL but < 10x the blank result
24MW2	Iron	123		C	I+	6010 METALS ICP	Estimated high "J+"; > PQL but < 10x the blank result
TIVIVVZ	HIVII	1 123	I IUK/L		121	TOOTO INITIALS ICE	resumated flight of the put a tox file pidlik result

Table A-5. Summary of 2010 Sample Results Qualified Because of Method Blank, Preparation Blank or Field Blank Contamination

Sample ID	Analyte Name	Value Reported	Value Reported (AFTER VALIDATION) Units	Lab Qualifier	Validation Qualifier	METHOD NAME	Reason
B24PK5	Iron	141	ug/L	C	I+	6010_METALS_ICP	Estimated high "J+"; > PQL but < 10x the blank result
B24PL3	Iron	27.9	ug/L	BC	0	6010 METALS ICP	PQL not provided by lab; result flagged with a "U" at the reported conc
324PL4	Iron	23.6	ug/L	BC	II.	6010 METALS ICP	PQL not provided by lab; result flagged with a "U" at the reported conc
324PL7	Iron	62.3	ug/L	BC	U	6010 METALS ICP	PQL not provided by lab; result flagged with a "U" at the reported conc
325JY0	Iron	20	ug/L	BC	li	6010 METALS ICP	PQL not provided by lab; result flagged with a "U" at the reported conc
B25JY1	Iron	60	ug/L	BC	III	6010 METALS ICP	PQL not provided by lab; result flagged with a "U" at the reported conc
B25PR3	Iron	38	ug/L	BC	II	6010 METALS ICP	PQL not provided by lab; result flagged with a "U" at the reported conc
B26545	Iron	48		В	U	6010 METALS ICP	PQL not provided by lab; result flagged with a "U" at the reported conc
B26546	Iron	560	ug/L	-	J+	6010 METALS ICP	Estimated high "J+"; > PQL but < 10x the blank result
B26556	Iron	19	ug/L	ВС	u	6010 METALS ICP	PQL not provided by lab; result flagged with a "U" at the reported conc
B26557	Iron	186	ug/L	С	J+	6010 METALS ICP	Estimated high "J+"; > PQL but < 10x the blank result
B26568	Iron	23	ug/L	В	u	6010 METALS ICP	PQL not provided by lab; result flagged with a "U" at the reported conc
B26569	Iron	43	ug/L	В	U	6010 METALS ICP	PQL not provided by lab; result flagged with a "U" at the reported conc
B26580	Iron	38	ug/L	ВС	U	6010 METALS ICP	PQL not provided by lab; result flagged with a "U" at the reported conc
B26581	Iron	30		BC	U	6010 METALS ICP	PQL not provided by lab; result flagged with a "U" at the reported conc
B265K8	Iron	37	ug/L	В	u	6010 METALS ICP	PQL not provided by lab; result flagged with a "U" at the reported conc
B265L4	Iron	28	ug/L	BC	U	6010 METALS ICP	PQL not provided by lab; result flagged with a "U" at the reported conc
B265M5	Iron	21	ug/L	BC	U	6010 METALS ICP	PQL not provided by lab; result flagged with a "U" at the reported conc
B265M6	Iron	39	ug/L	BC	U	6010 METALS ICP	PQL not provided by lab; result flagged with a "U" at the reported conc
B265P3	Iron	139	ug/L	C	J+	6010 METALS ICP	Estimated high "J+"; > PQL but < 10x the blank result
B26645	Iron	154	ug/L	c	J+	6010 METALS ICP	Estimated high "J+"; > PQL but < 10x the blank result
B26756	Iron	41	ug/L	BC	u	6010_METALS_ICP	PQL not provided by lab; result flagged with a "U" at the reported conc
B26909	Iron	25		BC	U	6010 METALS ICP	PQL not provided by lab; result flagged with a "U" at the reported conc
B26910	Iron	41	ug/L	BC	u	6010 METALS ICP	PQL not provided by lab; result flagged with a "U" at the reported conc
B26913	Iron	34	ug/L	BC	U	6010 METALS ICP	PQL not provided by lab; result flagged with a "U" at the reported conc
B26914	Iron	47	ug/L	BC	U	6010 METALS ICP	PQL not provided by lab; result flagged with a "U" at the reported conc
B26916	Iron	41	ug/L	ВС	U	6010 METALS ICP	PQL not provided by lab; result flagged with a "U" at the reported conc
B26917	Iron	29	ug/L	BC	U	6010 METALS ICP	PQL not provided by lab; result flagged with a "U" at the reported conc
B26920	Iron	38	ug/L	ВС	U	6010 METALS ICP	PQL not provided by lab; result flagged with a "U" at the reported conc
B26921	Iron	58		BC	u	6010 METALS ICP	PQL not provided by lab; result flagged with a "U" at the reported conc
B26928	Iron	36	ug/L	BC	U	6010 METALS ICP	PQL not provided by lab; result flagged with a "U" at the reported conc
B26929	Iron	65	ug/L	BC	u	6010 METALS ICP	PQL not provided by lab; result flagged with a "U" at the reported conc
B26932	Iron	73	ug/L	ВС	U	6010 METALS ICP	PQL not provided by lab; result flagged with a "U" at the reported conc
B26936	Iron	20	ug/L	ВС	U	6010 METALS ICP	PQL not provided by lab; result flagged with a "U" at the reported conc
B26937	Iron	48	ug/L	ВС	U	6010_METALS_ICP	PQL not provided by lab; result flagged with a "U" at the reported conc
B26941	Iron	40	ug/L	ВС	U	6010 METALS ICP	PQL not provided by lab; result flagged with a "U" at the reported conc
B26MC2	Iron	103	ug/L	ВС	U	6010_METALS_ICP	PQL not provided by lab; result flagged with a "U" at the reported conc
B26MC3	Iron	179	ug/L	ВС	U	6010 METALS ICP	PQL not provided by lab; result flagged with a "U" at the reported conc
B26569	Lead	0.314	ug/L	BD	U	200.8 METALS ICPMS	PQL not provided by lab; result flagged with a "U" at the reported conc
B265K7	Lead	40	ug/L	ВС	U	6010 METALS ICP	PQL not provided by lab; result flagged with a "U" at the reported conc
B265L9	Lead	29	ug/L	BC	U	6010_METALS_ICP	PQL not provided by lab; result flagged with a "U" at the reported conc
B265M0	Lead	26	ug/L	BC	U	6010_METALS_ICP	PQL not provided by lab; result flagged with a "U" at the reported conc
B265N8	Lead	29	ug/L	BC	U	6010_METALS_ICP	PQL not provided by lab; result flagged with a "U" at the reported conc
B27WN3	Lead	0.444	ug/L	BD	U	200.8_METALS_ICPMS	PQL not provided by lab; result flagged with a "U" at the reported conc
B27WR6	Lead	0.77	ug/L	BD	U	200.8_METALS_ICPMS	PQL not provided by lab; result flagged with a "U" at the reported conc
B27WX4	Lead	0.759	ug/L	BD	U	200.8_METALS_ICPMS	PQL not provided by lab; result flagged with a "U" at the reported conc
B27WX5	Lead	1.36	ug/L	BD	U	200.8_METALS_ICPMS	PQL not provided by lab; result flagged with a "U" at the reported conc
B23DD0	Manganese	6.9	ug/L	В	U	6010_METALS_ICP	PQL not provided by lab; result flagged with a "U" at the reported conc
B23DD0	Manganese	6.9	ug/L	В	U	6010_METALS_ICP	PQL not provided by lab; result flagged with a "U" at the reported conc
B25NT7	Manganese	17	ug/L	ВС	U	6010_METALS_ICP	PQL not provided by lab; result flagged with a "U" at the reported conc
B25PB6	Manganese	5	ug/L	BC	U	6010_METALS_ICP	PQL not provided by lab; result flagged with a "U" at the reported conc
B25PB8	Manganese	6	ug/L	BC	U	6010_METALS_ICP	PQL not provided by lab; result flagged with a "U" at the reported conc
B25PC1	Manganese	4	ug/L	ВС	U	6010_METALS_ICP	PQL not provided by lab; result flagged with a "U" at the reported conc
326545	Manganese	13	ug/L	В	U	6010_METALS_ICP	PQL not provided by lab; result flagged with a "U" at the reported conc
B26546	Manganese	18	ug/L	В	U	6010_METALS_ICP	PQL not provided by lab; result flagged with a "U" at the reported conc
B265L9	Manganese	18	ug/L	BC	U	6010_METALS_ICP	PQL not provided by lab; result flagged with a "U" at the reported conc
3265M0	Manganese	18		ВС	U	6010_METALS_ICP	PQL not provided by lab; result flagged with a "U" at the reported conc
							Rejected; Method blank has greater than 2X the PQL (2 ug/l) (15 ug/L) which is
B23FK2	Methylene chloride	42	ug/L	В	R	8260_VOA_GCMS	greater than acceptance criteria. Sample results are slightly less than 2X the MB contamination.
3269H0	Methylene chloride	1.2	ug/L	J	U	8260_VOA_GCMS	Flagged with a U; ≥ PQL < 10x blank result

Table A-5. Summary of 2010 Sample Results Qualified Because of Method Blank, Preparation Blank or Field Blank Contamination

Sample ID	Analyte Name	Value Reported	Value Reported (AFTER VALIDATION) Units	Lab Qualifier	Validation Qualifier	METHOD NAME	Reason
27WN2	Molybdenum	5.56	2	D Qualifier	Validation Qualifier		Estimated high "J+"; > PQL but < 10x the blank result
27WN3	Molybdenum	5.59		D	J+ I+	200.8_METALS_ICPMS	Estimated high "J+"; > PQL but < 10x the blank result
27WR5	Molybdenum	3.76	ug/L ug/L	U	J+	200.8 METALS ICPMS	Estimated high "J+"; > PQL but < 10x the blank result
27WR5 27WR6	,	1.94	O.	D	J+	200.8 METALS ICPMS	
	Molybdenum		ug/L				Estimated high "J+"; > PQL but < 10x the blank result
27WX4	Molybdenum	7.42		D D	J+ J+	200.8_METALS_ICPMS	Estimated high "J+"; > PQL but < 10x the blank result
27WX5	Molybdenum	7.82	ug/L	D		200.8_METALS_ICPMS	Estimated high "J+"; > PQL but < 10x the blank result
3286C2	Molybdenum	4.1	ug/L	_	J+	200.8_METALS_ICPMS	Estimated high "J+"; > PQL but < 10x the blank result
3286C3	Molybdenum	3.19	ug/L	D	J+	200.8_METALS_ICPMS	Estimated high "J+"; > PQL but < 10x the blank result
26739	Nickel	6	- Ci	BC	U	6010_METALS_ICP	PQL not provided by lab; result flagged with a "U" at the reported conc
326740	Nickel	5	u8/ L	BC	U	6010_METALS_ICP	PQL not provided by lab; result flagged with a "U" at the reported conc
26MC7	Nickel	7	ug/L	BC	U	6010_METALS_ICP	PQL not provided by lab; result flagged with a "U" at the reported conc
26MD2	Nickel	6	- 0,	BC	U	6010_METALS_ICP	PQL not provided by lab; result flagged with a "U" at the reported conc
26MD3	Nickel	8	ug/L	BC	U	6010_METALS_ICP	PQL not provided by lab; result flagged with a "U" at the reported conc
26MD7	Nickel	4	ug/L	BC	U	6010_METALS_ICP	PQL not provided by lab; result flagged with a "U" at the reported conc
29VR4	Nickel	9	ug/L	BC	U	6010_METALS_ICP	PQL not provided by lab; result flagged with a "U" at the reported conc
29VR5	Nickel	11	ug/L	BC	U	6010_METALS_ICP	PQL not provided by lab; result flagged with a "U" at the reported conc
29VV9	Nickel	20	ug/L	С	J+	6010_METALS_ICP	Estimated high "J+"; > PQL but < 10x the blank result
323DM3	Nitrogen in Nitrate	0.111	ug/mL	BD	U	300.0_ANIONS_IC	PQL not provided by lab; result flagged with a "U" at the reported conc
323FF6	Nitrogen in Nitrate	6.2	ug/mL	D	J+	300.0_ANIONS_IC	Estimated high "J+"; > PQL but < 10x the blank result
323FK4	Nitrogen in Nitrate	6.81	ug/mL	D	J+	300.0_ANIONS_IC	Estimated high "J+"; > PQL but < 10x the blank result
323J92	Nitrogen in Nitrate	2.34	ug/mL	D	J+	300.0_ANIONS_IC	Estimated high "J+"; > PQL but < 10x the blank result
323J93	Nitrogen in Nitrate	1.85	ug/mL	D	J+	300.0 ANIONS IC	Estimated high "J+"; > PQL but < 10x the blank result
323J94	Nitrogen in Nitrate	1.65	ug/mL	D	J+	300.0_ANIONS_IC	Estimated high "J+"; > PQL but < 10x the blank result
323J95	Nitrogen in Nitrate	7.41	ug/mL	D	To.	300.0_ANIONS_IC	Estimated high "J+"; > PQL but < 10x the blank result
					57		
323J98	Nitrogen in Nitrate	3.19	ug/mL	D	J+	300.0_ANIONS_IC	Estimated high "J+"; > PQL but < 10x the blank result
323JB6	Nitrogen in Nitrate	1.65	ug/mL	D	J+	300.0_ANIONS_IC	Estimated high "J+"; > PQL but < 10x the blank result
26P99	Nitrogen in Nitrate	6.5	ug/mL	D	J+	300.0 ANIONS IC	Estimated high "J+"; > PQL but < 10x the blank result
24LH8	Phosphorus	143	ug/L	BC	u	6010 METALS ICP	PQL not provided by lab; result flagged with a "U" at the reported conc
24LH9	Phosphorus	104		BC	U	6010 METALS ICP	PQL not provided by lab; result flagged with a "U" at the reported conc
24LK1	Phosphorus	109	ug/L	BC	U	6010 METALS ICP	PQL not provided by lab; result flagged with a "U" at the reported conc
24LK2	Phosphorus	65.7	ug/L	BC	U	6010 METALS ICP	PQL not provided by lab; result flagged with a "U" at the reported conc
24LK5	Phosphorus	116		BC	U	6010 METALS ICP	PQL not provided by lab; result flagged with a "U" at the reported conc
24LK6	Phosphorus	129	0.	BC	11	6010_METALS_ICP	PQL not provided by lab; result flagged with a "U" at the reported conc
24LK6 24LK9	Phosphorus	148		BC	U II	6010_METALS_ICP	PQL not provided by lab; result flagged with a "U" at the reported conc
24LK9 24LL0		109	- 5,	BC	11	6010_METALS_ICP	
	Phosphorus		ug/L		U		PQL not provided by lab; result flagged with a "U" at the reported conc
24LL3	Phosphorus	136	ug/L	BC	U	6010_METALS_ICP	PQL not provided by lab; result flagged with a "U" at the reported conc
24LL4	Phosphorus	159	ug/L	BC	7.	6010_METALS_ICP	PQL not provided by lab; result flagged with a "U" at the reported conc
24LL8	Phosphorus	183	ug/L	BC	U	6010_METALS_ICP	PQL not provided by lab; result flagged with a "U" at the reported conc
24LN5	Phosphorus	194	ug/L	BC	U	6010_METALS_ICP	PQL not provided by lab; result flagged with a "U" at the reported conc
24LN9	Phosphorus	103		BC	U	6010_METALS_ICP	PQL not provided by lab; result flagged with a "U" at the reported conc
24LR6	Phosphorus	104	ug/L	BC	U	6010_METALS_ICP	PQL not provided by lab; result flagged with a "U" at the reported conc
26563	Phosphorus	109	ug/L	BC	U	6010_METALS_ICP	PQL not provided by lab; result flagged with a "U" at the reported conc
24∐2	Selenium	1.99	ug/L	BDC	U	200.8_METALS_ICPMS	PQL not provided by lab; result flagged with a "U" at the reported conc
24LJ3	Selenium	1.87	ug/L	BDC	U	200.8_METALS_ICPMS	PQL not provided by lab; result flagged with a "U" at the reported conc
24LP2	Selenium	3.07	ug/L	BDC	U	200.8_METALS_ICPMS	PQL not provided by lab; result flagged with a "U" at the reported conc
24LP3	Selenium	2	ug/L	BDC	U	200.8_METALS_ICPMS	PQL not provided by lab; result flagged with a "U" at the reported conc
24LR9	Selenium	3.08		BDC	U		PQL not provided by lab; result flagged with a "U" at the reported conc
24LT0	Selenium	3.29		BDC	U	200.8 METALS ICPMS	PQL not provided by lab; result flagged with a "U" at the reported conc
24M43	Selenium	3.8	- Ci	BDC	U	200.8 METALS ICPMS	PQL not provided by lab; result flagged with a "U" at the reported conc
24M44	Selenium	5.22	ug/L	BDC	III		PQL not provided by lab; result flagged with a "U" at the reported conc
26533	Selenium	1.94	ug/L ug/L	BDC	ii		PQL not provided by lab; result flagged with a "U" at the reported conc
326534		2.07		BDC	11		
20554	Selenium	2.07	ug/L	BUC	Į v	IZUU.8_IVIETALS_ICPIVIS	PQL not provided by lab; result flagged with a "U" at the reported conc

Table A-5. Summary of 2010 Sample Results Qualified Because of Method Blank, Preparation Blank or Field Blank Contamination

Sample ID	Analyte Name	Value Reported	Value Reported (AFTER VALIDATION)	Units	s Lab Qualifier	Validation Qualifier	METHOD NAME	Reason		
B26562	Selenium	1.69		ug/L	BDC	U	200.8 METALS ICPMS	PQL not provided by lab; result flagged with a "U" at the reported conc	7	
B26MB7	Selenium	4.29		ug/L	BDC	U	200.8 METALS ICPMS	PQL not provided by lab; result flagged with a "U" at the reported conc	-	
B26MB8	Selenium	4.18		ug/L	BDC	U	200.8 METALS ICPMS	PQL not provided by lab; result flagged with a "U" at the reported conc	-	
B23DM3	Sulfate	2.77		ug/mL	D	J+	300.0 ANIONS IC	Estimated high "J+"; > PQL but < 10x the blank result	-	
B23FF6	Sulfate	37.2		ug/mL	D	J+	300.0 ANIONS IC	Estimated high "J+"; > PQL but < 10x the blank result	-	
B23FK4	Sulfate	36.2		ug/mL	D	J+	300.0 ANIONS IC	Estimated high "J+"; > PQL but < 10x the blank result	-	
B23J95	Sulfate	41.2		ug/mL	D	J+	300.0 ANIONS IC	Estimated high "J+"; > PQL but < 10x the blank result	-	
B23J98	Sulfate	35.9		ug/mL	D	I+	300.0 ANIONS IC	Estimated high "J+"; > PQL but < 10x the blank result	-	
B23JB6	Sulfate	27		ug/mL	D	J+	300.0 ANIONS IC	Estimated high "J+"; > PQL but < 10x the blank result	-	
B26P99	Sulfate	63.4		ug/mL	D	J+	300.0 ANIONS IC	Estimated high "J+"; > PQL but < 10x the blank result	-	
B25NV0	Thallium	46		ug/L	BC	U	6010 METALS ICP	PQL not provided by lab; result flagged with a "U" at the reported conc	7	
B25TK7	Thallium	40		ug/L	BC	u	6010 METALS ICP	PQL not provided by lab; result flagged with a "U" at the reported conc	-	
B26MC7	Thallium	69		ug/L	BCN	U	6010 METALS ICP	PQL not provided by lab; result flagged with a "U" at the reported conc	-	
B26MC8	Thallium	50		ug/L	BCN	U	6010 METALS ICP	PQL not provided by lab; result flagged with a "U" at the reported conc	7	
B26MD2	Thallium	99		ug/L	BCN	U	6010 METALS ICP	PQL not provided by lab; result flagged with a "U" at the reported conc	699-17-5 40318.45	Y 7440-38-2
B26MD3	Thallium	68		ug/L	BCN	U	6010 METALS ICP	PQL not provided by lab; result flagged with a "U" at the reported conc	699-17-5 40318.45	
B26MD7	Thallium	102		ug/L	BCN	U	6010_METALS_ICP	PQL not provided by lab; result flagged with a "U" at the reported conc	699-S8-19 40339.35	
B26MD8	Thallium	75		ug/L	BCN	U	6010 METALS ICP	PQL not provided by lab; result flagged with a "U" at the reported conc	699-13-1E 40339.43	
B27X23	Trichloroethene	0.48		ug/L	JB	U	8260 VOA GCMS	Flagged with a U; ≥ MDL but ≤ PQL	699-13-1E 40339.43	
B27X29	Trichloroethene	0.43		ug/L	JB	U	8260 VOA GCMS	Flagged with a U; ≥ MDL but ≤ PQL	699-13-2D 40339.38	
B26KM5	Uranium	8.21		ug/L	D	J+	200.8 METALS ICPMS	Estimated high "J+"; > PQL but < 10x the blank result	699-13-2D 40339.38	
B25NT6	Vanadium	23		ug/L	В	U	6010 METALS ICP	PQL not provided by lab; result flagged with a "U" at the reported conc	699-13-3A 40339.48	
B25NT7	Vanadium	16		ug/L	В	U	6010 METALS ICP	PQL not provided by lab; result flagged with a "U" at the reported conc	699-S3-E12 40339.41	
B25PB5	Vanadium	24		ug/L	В	u	6010 METALS ICP	PQL not provided by lab; result flagged with a "U" at the reported conc	699-31-11 40373.42	
B25PB6	Vanadium	15		ug/L	В	U	6010 METALS ICP	PQL not provided by lab; result flagged with a "U" at the reported conc	699-35-9 40375.5	
B25PB8	Vanadium	27		ug/L	В	U	6010 METALS ICP	PQL not provided by lab; result flagged with a "U" at the reported conc	699-38-15 40373.47	
B25PB9	Vanadium	15		ug/L	В	U	6010 METALS ICP	PQL not provided by lab; result flagged with a "U" at the reported conc	699-41-23 40374.56	
B25PC2	Vanadium	17		ug/L	В	U	6010 METALS ICP	PQL not provided by lab; result flagged with a "U" at the reported conc	699-41-23 40374.56	
B25PC4	Vanadium	15		ug/L	В	U	6010 METALS ICP	PQL not provided by lab; result flagged with a "U" at the reported conc	699-46-211 40374.47	
B25PC5	Vanadium	26		ug/L	В	ŭ	6010 METALS ICP	PQL not provided by lab; result flagged with a "U" at the reported conc	299-E25-32 40387.43	
B26723	Vanadium	41		ug/L	ВС	U	6010 METALS ICP	PQL not provided by lab; result flagged with a "U" at the reported conc	699-22-35 40378.42	
B26732	Vanadium	24		ug/L	ВС	U	6010 METALS ICP	PQL not provided by lab; result flagged with a "U" at the reported conc	699-22-35 40378.42	
B26743	Vanadium	41		ug/L	BC	U	6010 METALS ICP	PQL not provided by lab; result flagged with a "U" at the reported conc	699-13-1A 40440.38	
B26744	Vanadium	42		ug/L	BC	U	6010 METALS ICP	PQL not provided by lab; result flagged with a "U" at the reported conc	699-13-1A 40440.38	
B24MM9	Zinc	19		ug/L	BC	U	6010 METALS ICP	PQL not provided by lab; result flagged with a "U" at the reported conc	699-13-1E 40402.46	
B24MN1	Zinc	7		ug/L	ВС	U	6010 METALS ICP	PQL not provided by lab; result flagged with a "U" at the reported conc	699-13-1E 40402.46	
B24MN2	Zinc	8		ug/L	ВС	U	6010 METALS ICP	PQL not provided by lab; result flagged with a "U" at the reported conc	699-13-2D 40402.38	Y 7440-28-0
B25JX4	Zinc	19		ug/L	BC	u	6010 METALS ICP	PQL not provided by lab; result flagged with a "U" at the reported conc	699-13-2D 40402.38	
B25JX5	Zinc	18		ug/L	BC	U	6010 METALS ICP	PQL not provided by lab; result flagged with a "U" at the reported conc	699-13-3A 40402.42	
B25JX7	Zinc	20		ug/L	BC	U	6010 METALS ICP	PQL not provided by lab; result flagged with a "U" at the reported conc	699-13-3A 40402.42	
B25JX8	Zinc	19		ug/L	BC	U	6010 METALS ICP	PQL not provided by lab; result flagged with a "U" at the reported conc	699-14-38 40529.42	
B25PR6	Zinc	45		ug/L	c	J+	6010 METALS ICP	Estimated high "J+"; > PQL but < 10x the blank result	699-32-22/ 40517.36	
B26720	Zinc	4		ug/L	BC	U	6010 METALS ICP	PQL not provided by lab; result flagged with a "U" at the reported conc	699-32-22/ 40517.36	
B26721	Zinc	15		ug/L	BC	U	6010 METALS ICP	PQL not provided by lab; result flagged with a "U" at the reported conc		,,,,,,,,,,,
B29TH2	Zinc	4		ug/L	BC	U	6010 METALS ICP	PQL not provided by lab; result flagged with a "U" at the reported conc	7	
B29TH3	Zinc			ug/L	BC	U	6010 METALS ICP	PQL not provided by lab; result flagged with a "U" at the reported conc	\dashv	
				-6/-	50	-	100001111111111111111111111111111111111	1. 42 o de the reported cone		

Table A-6. Summary of 2011 Sample Results Qualified Because of Method Blank, Preparation Blank or Field Blank Contamination

		Value	Value Reported					
Sample ID	Analyte Name	Reported	(AFTER VALIDATION)	Units	Lab Qualifier	Validation Qualifier	METHOD_NAME	Reason
and the second second	Acetone	2		ug/L	В	Ü	8260_VOA_GCMS	Flagged with a U; ≥ MDL but ≤ PQL
C 101 01 120 0	Acetone	1.4		ug/L	JB	U	8260_VOA_GCMS	Flagged with a U; ≥ MDL but ≤ PQL
	Acetone	1.4		ug/L	JB	U	8260_VOA_GCMS	Flagged with a U; ≥ MDL but ≤ PQL
	Acetone	1.4		ug/L	JB	U	8260_VOA_GCMS	Flagged with a U; ≥ MDL but ≤ PQL
	Acetone	1.8	2	ug/L	JB	U	8260_VOA_GCMS	Flagged with a U; ≥ MDL but ≤ PQL
B2HH38	Acetone	1.5		ug/L	JB	U	8260_VOA_GCMS	Flagged with a U; ≥ PQL < 10x blank result
B2HH53	Acetone	1.7	2	ug/L	JB	U	8260_VOA_GCMS	Flagged with a U; ≥ MDL but ≤ PQL
B2HH66	Acetone	2.1		ug/L	В	U	8260_VOA_GCMS	Flagged with a U; Professional judgement
B2F404	Arsenic	10.8		ug/L	D	R	200.8_METALS_ICPMS	Rejected; gross contamination
B2F408	Arsenic	11.4		ug/L	D	R	200.8_METALS_ICPMS	Rejected; gross contamination
B2F404	Barium	35		ug/L		R	6010_METALS_ICP	Rejected; gross contamination
B2F408	Barium	36		ug/L		R	6010_METALS_ICP	Rejected; gross contamination
B2B0H4	Carbon tetrachloride	1.8		ug/L	J	U	8260_VOA_GCMS	Flagged with a U; professional judgement
B2B0P7	Carbon tetrachloride	2		ug/L	J	U	8260 VOA GCMS	Flagged with a U; professional judgement
B2B3R1	Carbon tetrachloride	1.4		ug/L	J	U	8260 VOA GCMS	Flagged with a U; professional judgement
	Chloride	13		ug/mL	D	U	300.0 ANIONS IC	Flagged with a U; professional judgement
	Chromium	11		ug/L	В	U	6010 METALS ICP	PQL not provided by lab; result flagged with a "U" at the reported conc
	Chromium	6		ug/L	В	Ü	6010 METALS ICP	PQL not provided by lab; result flagged with a "U" at the reported conc
	Fluoride	0.286		ug/mL	D	Ü	300.0 ANIONS IC	Flagged with a U; professional judgement
7.75-7.1	Iron	43		ug/L	В	U	6010 METALS ICP	PQL not provided by lab; result flagged with a "U" at the reported conc
	Iron	25		ug/L	BC	U	6010 METALS ICP	PQL not provided by lab; result flagged with a "U" at the reported conc
	Iron	52		ug/L	BC	II	6010_METALS_ICP	PQL not provided by lab; result flagged with a "U" at the reported conc
	Iron	130		ug/L	C	I+	6010 METALS ICP	Estimated high "J+"; > PQL but < 10x the blank result
0.00.0000000000000000000000000000000000	Iron	40		ug/L	BC	11	6010 METALS ICP	PQL not provided by lab; result flagged with a "U" at the reported conc
	Nickel	6		ug/L	BC	III	6010 METALS ICP	PQL not provided by lab; result flagged with a "U" at the reported conc
	Nickel	6		ug/L	BC	11	6010 METALS ICP	PQL not provided by lab; result flagged with a "U" at the reported conc
(F-9-10-9), 61_T-(10-7)	Nitrogen in ammonia	18.6	50	ug/L	BCN	11	350.1 AMMONIA	Flagged with a U; ≥ MDL but ≤ PQL
	Nitrogen in ammonia	11.4		ug/L	BCN	0	350.1 AMMONIA	Flagged with a U; ≥ MDL but ≤ PQL
	Nitrogen in ammonia	11.4		ug/L	BCN	U .	350.1_AMMONIA	
	Nitrogen in ammonia	30.2		ug/L	BC	U	350.1_AIMINIONIA	Flagged with a U; ≥ MDL but ≤ PQL Flagged with a U; ≥ MDL but ≤ PQL
	Nitrogen in ammonia	20.5		ug/L	BCN	U	350.1_AMMONIA	33
		7.66	30		D	U		Flagged with a U; ≥ MDL but ≤ PQL
	Nitrogen in Nitrate			ug/mL	BD	0	300.0_ANIONS_IC	Flagged with a U; professional judgement
	Nitrogen in Nitrite	0.0565		ug/mL	BD	0	300.0_ANIONS_IC	PQL not provided by lab; result flagged with a "U" at the reported conc
	Silver	39		ug/L	C	K	6010_METALS_ICP	Rejected result; professional judgement based on lack of trend
	Silver	38		ug/L	C	R	6010_METALS_ICP	Rejected result; professional judgement based on lack of trend
SPECIAL DELICITY	Strontium	195		ug/L		U	6010_METALS_ICP	Flagged with a U; professional judgement
	Strontium	198		ug/L		U	6010_METALS_ICP	Flagged with a U; professional judgement
Transcending of the column	Sulfate	68.7		ug/mL	D	U	300.0_ANIONS_IC	Flagged with a U; professional judgement
	Total organic carbon	0.45		mg/L	ļ	U	9060_TOC	Flagged with a U; professional judgement
	Total organic carbon	0.322		mg/L	ļ	J+	9060_TOC	Estimated high "J+"; > PQL but < 10x the blank result
EAST-MODELLY DUTCHON	Total organic carbon	0.503		mg/L		J+	9060_TOC	Estimated high "J+"; > PQL but < 10x the blank result
	Total organic carbon	0.46		mg/L		J+	9060_TOC	Estimated high "J+"; > PQL but < 10x the blank result
	Total organic carbon	0.624		mg/L		J+	9060_TOC	Estimated high "J+"; > PQL but < 10x the blank result
B2B0X7	Total organic halides	8.52		ug/L	В	J+	9020_TOX	Estimated high "J+"; > PQL but < 10x the blank result
	Total organic halides	13		ug/L	В	J+	9020_TOX	Estimated high "J+"; > PQL but < 10x the blank result
	Total organic halides	9.9		ug/L	В	J+	9020_TOX	Estimated high "J+"; > PQL but < 10x the blank result
B2HRN4	Total organic halides	8.9		ug/L	В	J+	9020_TOX	Estimated high "J+"; > PQL but < 10x the blank result
B2HRP1	Total organic halides	5.6		ug/L	В	J+	9020_TOX	Estimated high "J+"; > PQL but < 10x the blank result
B2HRP6	Total organic halides	3.8	5	ug/L	JB	U	9020_TOX	Flagged with a U; ≥ MDL but ≤ PQL
B2HRR1	Total organic halides	5.8		ug/L	В	J+	9020_TOX	Estimated high "J+"; > PQL but < 10x the blank result
		13000		pCi/L		1	TRITIUM_EIE_LSC	Rejected; gross contamination

Table A-6. Summary of 2011 Sample Results Qualified Because of Method Blank, Preparation Blank or Field Blank Contamination

Sample ID	Analyte Name	Value Reported	Value Reported (AFTER VALIDATION)	Units	Lab Qualifier	Validation Qualifier	METHOD_NAME	Reason
B2F404	Vanadium	26		ug/L	В	U	6010_METALS_ICP	PQL not provided by lab; result flagged with a "U" at the reported conc
B2F408	Vanadium	29		ug/L	В	U	6010_METALS_ICP	PQL not provided by lab; result flagged with a "U" at the reported conc
B29YT4	Zinc	29		ug/L	С	R	6010_METALS_ICP	Rejected result; gross contamination
B2B0H3	Zinc	4		ug/L	BC	U	6010_METALS_ICP	PQL not provided by lab; result flagged with a "U" at the reported conc
B2B0H4	Zinc	7		ug/L	BC	U	6010_METALS_ICP	PQL not provided by lab; result flagged with a "U" at the reported conc
B2BMJ2	Zinc	4		ug/L	BC	U	6010_METALS_ICP	PQL not provided by lab; result flagged with a "U" at the reported conc
В2ВМЈЗ	Zinc	4		ug/L	BC	U	6010_METALS_ICP	PQL not provided by lab; result flagged with a "U" at the reported conc
B2BML2	Zinc	277		ug/L	CN	J+	6010_METALS_ICP	Estimated high "J+"; > PQL but < 10x the blank result
B2BML3	Zinc	399		ug/L	CN	J+	6010_METALS_ICP	Estimated high "J+"; > PQL but < 10x the blank result
B2BRV2	Zinc	314		ug/L	CN	J+	6010_METALS_ICP	Estimated high "J+"; > PQL but < 10x the blank result
B2BRV3	Zinc	196		ug/L	CN	J+	6010_METALS_ICP	Estimated high "J+"; > PQL but < 10x the blank result
B2BRV6	Zinc	461		ug/L	CN	J+	6010_METALS_ICP	Estimated high "J+"; > PQL but < 10x the blank result
32BRV7	Zinc	81		ug/L	CN	J+	6010_METALS_ICP	Estimated high "J+"; > PQL but < 10x the blank result
B2CKK6	Zinc	48		ug/L	С	J+	6010_METALS_ICP	Estimated high "J+"; > PQL but < 10x the blank result
B2CKK8	Zinc	35		ug/L	С	J+	6010_METALS_ICP	Estimated high "J+"; > PQL but < 10x the blank result

Table A-7. Summary of 2012 Sample Results Qualified Because of Method Blank, Preparation Blank or Field Blank Contamination

Sample ID	Analyte Name	Value Reported	Value Reported (AFTER VALIDATION)	Units	Lab Qualifier	Validation Qualifier	METHOD_NAME	Reason
32N336	1,2,3,4,6,7,8-Heptachlorodibenzodioxin	0.0000015	(ALTER VALIDATION)	ug/L	BJ Qualifier	U vandadon Quanner	8290 DIOXINS GCMS	Flagged with a U; ≥ PQL < 10x blank result
2N3C6	1,2,3,4,6,7,8-Heptachlorodibenzodioxin	0.00011		ug/L	В	U	8290_DIOXINS_GCMS	Flagged with a U; ≥ PQL < 10x blank result
2N336	1,2,3,4,6,7,8-Heptachlorodibenzofuran	0.000001		ug/L	QBJ	U	8290_DIOXINS_GCMS	Flagged with a U; ≥ PQL < 10x blank result
2N3C6	1,2,3,4,6,7,8-Heptachlorodibenzofuran	0.000006		ug/L	QBJ	U	8290_DIOXINS_GCMS	Flagged with a U; ≥ PQL < 10x blank result
2N336	1,2,3,4,7,8,9-Heptachlorodibenzofuran	0.00000085		ug/L	BJ	U	8290_DIOXINS_GCMS	Flagged with a U; ≥ PQL < 10x blank result
32N3C6	1,2,3,4,7,8,9-Heptachlorodibenzofuran	0.0000036		ug/L	BJ	U	8290_DIOXINS_GCMS	Flagged with a U; ≥ PQL < 10x blank result
32N336	1,2,3,4,7,8-Hexachlorodibenzofuran	0.00000066		ug/L	QBJ	U	8290_DIOXINS_GCMS	Flagged with a U; ≥ PQL < 10x blank result
32N3C6	1,2,3,4,7,8-Hexachlorodibenzofuran	0.000005		ug/L	QBJ	U	8290_DIOXINS_GCMS	Flagged with a U; ≥ PQL < 10x blank result
B2N336	1,2,3,6,7,8-Hexachlorodibenzofuran	0.00000057		ug/L	BJ	U	8290_DIOXINS_GCMS	Flagged with a U; ≥ PQL < 10x blank result
B2N3C6 B2N336	1,2,3,6,7,8-Hexachlorodibenzofuran	0.0000022		ug/L	QBJ	U	8290_DIOXINS_GCMS	Flagged with a U; ≥ PQL < 10x blank result
32N336 32N3C6	1,2,3,6,7,8-Hexachlorodibenzo-p-dioxin 1,2,3,6,7,8-Hexachlorodibenzo-p-dioxin	0.0000038		ug/L	QBJ BJ	U	8290_DIOXINS_GCMS 8290_DIOXINS_GCMS	Flagged with a U; ≥ PQL < 10x blank result Flagged with a U; ≥ PQL < 10x blank result
32N3C6 32N336	1,2,3,7,8,9-Hexachlorodibenzofuran	0.0000076		ug/L ug/L	QBJ	U	8290 DIOXINS GCMS	Flagged with a U; ≥ PQL < 10x blank result
32N336	1,2,3,7,8,9-Hexachlorodibenzo-p-dioxin	0.0000011		ug/L	BJ	U	8290 DIOXINS GCMS	Flagged with a U; ≥ PQL < 10x blank result
32N3C6	1,2,3,7,8,9-Hexachlorodibenzo-p-dioxin	0.0000078		ug/L	QBJ	U	8290_DIOXINS_GCMS	Flagged with a U; ≥ PQL < 10x blank result
32N336	1,2,3,7,8-Pentachlorodibenzofuran	0.00000058		ug/L	QBJ	U	8290_DIOXINS_GCMS	Flagged with a U; ≥ PQL < 10x blank result
32N3C6	1,2,3,7,8-Pentachlorodibenzofuran	0.000001		ug/L	QBJ	U	8290_DIOXINS_GCMS	Flagged with a U; ≥ PQL < 10x blank result
32N336	2,3,4,6,7,8-Hexachlorodibenzofuran	0.0000005		ug/L	QBJ	U	8290 DIOXINS GCMS	Flagged with a U; ≥ PQL < 10x blank result
32N3C6	2,3,4,6,7,8-Hexachlorodibenzofuran	0.00000075		ug/L	QBJ	U	8290_DIOXINS_GCMS	Flagged with a U; ≥ PQL < 10x blank result
32N3C6	2,3,4,7,8-Pentachlorodibenzofuran	0.00000095		ug/L	QBJ	U	8290_DIOXINS_GCMS	Flagged with a U; ≥ PQL < 10x blank result
32KMD5	Acetone	2		ug/L	В	U	8260_VOA_GCMS	Flagged with a U; ≥ MDL but ≤ PQL
32N3D4	Acetone	1.4		ug/L	JB		8260_VOA_GCMS	Flagged with a U; ≥ MDL but ≤ PQL
324LJ8	Aluminum	169		ug/L	С	J+	6010_METALS_ICP	Estimated high "J+"; > PQL but < 10x the blank result
B26575	Aluminum	271		ug/L	С	J+	6010_METALS_ICP	Estimated high "J+"; > PQL but < 10x the blank result
3265L3	Aluminum	246		ug/L	С	J+	6010_METALS_ICP	Estimated high "J+"; > PQL but < 10x the blank result
				500 ft				Rejected result; Conc < 10x blank result; lab did not report PQL or assign B flag
B2K3W4	Antimony	61.2		ug/L	BC	R	6010_METALS_ICP	as required
02//2/1/7	A	55		t to	200		COAO NASTALO IOD	Rejected result; Conc < 10x blank result; lab did not report PQL or assign B flag
B2K3W7	Antimony	55		ug/L	BC	К	6010_METALS_ICP	as required Rejected result: Conc < 10x blank result: lab did not report PQL or assign B flag
B2K3Y5	A - 4:	98.9		ug/L	вс		6010_METALS_ICP	as required
DZK313	Antimony	96.9		ug/ L	ВС	n .	0010_WETALS_ICF	Rejected result; Conc < 10x blank result; lab did not report PQL or assign B flag
B2K3Y8	Antimony	58.9		ug/L	вс	R	6010 METALS ICP	as required
B2KK28	Antimony	84		ug/L	В	R	6010 METALS ICP	Rejected result; gross contamination
B2KK32	Antimony	82.7		ug/L	В	R	6010_METALS_ICP	Rejected result; gross contamination
B24LJ7	Arsenic	70		ug/L	BC	R	6010_METALS_ICP	Rejected result; gross contamination
B2JTT0	Arsenic	6.28		ug/L	DC	J+	200.8 METALS ICPMS	Estimated high "J+"; > PQL but < 10x the blank result
B2JTT8	Arsenic	6.35		ug/L	DC	J+	200.8 METALS ICPMS	Estimated high "J+"; > PQL but < 10x the blank result
B2JTV8	Arsenic	8.05		ug/L	DC	J+	200.8_METALS_ICPMS	Estimated high "J+"; > PQL but < 10x the blank result
B2JTW3	Arsenic	9.51		ug/L	DC	J+	200.8_METALS_ICPMS	Estimated high "J+"; > PQL but < 10x the blank result
B2JTW7	Arsenic	9.79		ug/L	DC	J+	200.8_METALS_ICPMS	Estimated high "J+"; > PQL but < 10x the blank result
B2JWT8	Arsenic	3.95		ug/L	BDC	U	200.8_METALS_ICPMS	PQL not provided by lab; result flagged with a "U" at the reported conc
B2JWV0	Arsenic	3.4		ug/L	BDC	U	200.8_METALS_ICPMS	PQL not provided by lab; result flagged with a "U" at the reported conc
B2JWV2	Arsenic	2.81		ug/L	BDC	U	200.8_METALS_ICPMS	PQL not provided by lab; result flagged with a "U" at the reported conc
B2JWV4	Arsenic	4.64		ug/L	DC	J+	200.8_METALS_ICPMS	Estimated high "J+"; > PQL but < 10x the blank result
B2JWW7	Arsenic	7.02		ug/L	DC	J+	200.8_METALS_ICPMS	Estimated high "J+"; > PQL but < 10x the blank result
B2M1N3	Barium	104		ug/L		R	6010_METALS_ICP	Rejected result; gross contamination
32JTH8	Chromium	11.9		ug/L	BC	U	6010_METALS_ICP	PQL not provided by lab; result flagged with a "U" at the reported conc
32JTH8	Chromium	11.9		ug/L	BC BC	U	6010_METALS_ICP	PQL not provided by lab; result flagged with a "U" at the reported conc
32JTJ7 32JTP5	Chromium	6.7		ug/L ug/L	BC BC	U	6010_METALS_ICP 6010_METALS_ICP	PQL not provided by lab; result flagged with a "U" at the reported conc PQL not provided by lab; result flagged with a "U" at the reported conc
32JTX4	Chromium	8.4		ug/L	BC	U	6010_METALS_ICP	PQL not provided by lab; result flagged with a "U" at the reported conc
32LF80	Chromium	8.7		ug/L	BC	U	6010_METALS_ICP	PQL not provided by lab; result flagged with a "U" at the reported conc
3284F5	Cobalt	0.7 A		ug/L	BC	U	6010_METALS_ICP	PQL not provided by lab; result flagged with a "U" at the reported conc
3284F6	Cobalt	4		ug/L	BC	U	6010_METALS_ICP	PQL not provided by lab; result flagged with a "U" at the reported conc
325M79	Copper	5		ug/L	BC	U	6010_METALS_ICP	PQL not provided by lab; result flagged with a "U" at the reported conc
325NV0	Copper	4		ug/L	BC	U	6010_METALS_ICP	PQL not provided by lab; result flagged with a "U" at the reported conc
325NV2	Copper	5		ug/L	BC	U	6010_METALS_ICP	PQL not provided by lab; result flagged with a "U" at the reported conc
325NV3	Copper	7		ug/L	BC	U	6010_METALS_ICP	PQL not provided by lab; result flagged with a "U" at the reported conc
325NV5	Copper	5		ug/L	BC	U	6010_METALS_ICP	PQL not provided by lab; result flagged with a "U" at the reported conc
326MC2	Copper	9		ug/L	BC	U	6010_METALS_ICP	PQL not provided by lab; result flagged with a "U" at the reported conc
326MC3	Copper	10		ug/L	BC	U	6010_METALS_ICP	PQL not provided by lab; result flagged with a "U" at the reported conc
327WM0	Copper	6		ug/L	BC	U	6010_METALS_ICP	PQL not provided by lab; result flagged with a "U" at the reported conc
32KL90	Copper	4		ug/L	В	U	6010_METALS_ICP	PQL not provided by lab; result flagged with a "U" at the reported conc
32N336	Heptachlorodibenzofurans	0.0000019		ug/L	QBJ	U	8290_DIOXINS_GCMS	Flagged with a U; ≥ PQL < 10x blank result
32N3C6	Heptachlorodibenzofurans	0.000016		ug/L	QJB	U	8290_DIOXINS_GCMS	Flagged with a U; ≥ PQL < 10x blank result
	Heptachlorodibenzo-p-dioxins	0.0000029		ug/L	QJB	U	8290_DIOXINS_GCMS	Flagged with a U; ≥ PQL < 10x blank result
32N336		0.00015	1	ug/L	В	U	8290_DIOXINS_GCMS	Flagged with a U; ≥ PQL < 10x blank result
32N336 32N3C6	Heptachlorodibenzo-p-dioxins			6				
32N336 32N3C6 32N336	Hexachlorodibenzofurans	0.000011		ug/L	JQB	U	8290_DIOXINS_GCMS	Flagged with a U; ≥ PQL < 10x blank result
32N336 32N3C6 32N336 32N3C6	Hexachlorodibenzofurans Hexachlorodibenzofurans	0.000011 0.000019		ug/L	QJB	U	8290_DIOXINS_GCMS	Flagged with a U; ≥ PQL < 10x blank result
32N336 32N3C6 32N336	Hexachlorodibenzofurans	0.000011				0		

Table A-7. Summary of 2012 Sample Results Qualified Because of Method Blank, Preparation Blank or Field Blank Contamination

Non-thermal property 41 947 64 9 9 900 MWING S Property Non-thermal property 423 947 6 9 900 MWING S Property Non-thermal property 333 947 6 9 900 MWING S Property Non-thermal property 334 947 6 9 900 MWING S Property Non-thermal property 335 947 6 9 900 MWING S Property And and and property 335 947 6 9 900 MWING S Property And and and property 335 947 6 9 900 MWING S Property And a	Sample ID	Analyte Name	Value Nalue Reported (AFTER VALIDATION)	Units Lab Qualifier	er Validation Qualifier	METHOD_NAME	Reason
Decided by Company 25.25 26.77	B26910	Iron	41		n ·	6010_METALS_ICP	PQL not provided by lab; result flagged with a "U" at the reported conc
One of the control of the co	В2ЛТН8	Iron	429		± :	6010_METALS_ICP	Estimated high "J+"; > PQL but < 10x the blank result
Conditional control SSID eg/L CCC CON CONTROL CON CON	BZILII	Iron	6.70		0 :	6010 METALS ICP	PQL not provided by lab, result flagged with a "U" at the reported conc
Continue	B21TVA	Iron	39.3		0 =	6010 METALS ICP	PCL not provided by lab; result flagged With a "II" at the reported conc
Lead	B2JTX7	Iron	19.4		0 0		provided by lab: result flaged with a "U" at the reported
Decided	B265K7	Lead	40		n	LS ICP	PQL not provided by lab; result flagged with a "U" at the reported conc
tead of the color of	B265L9	Lead	29		n	6010_METALS_ICP	PQL not provided by lab; result flagged with a "U" at the reported conc
clased clased 0.7.20 agf, clase 0 0.000 MEMORA, CLASE clased clased 0.1.20 clased 0 0.000 MEMORA, CLASE clased <	B265M0	Lead	26		n	6010_METALS_ICP	PQL not provided by lab; result flagged with a "U" at the reported conc
obstach colorised color	B265N8	Lead	29		o :	6010_METALS_ICP	PQL not provided by lab; result flagged with a "U" at the reported conc
Lond COLSB QPAT ROD COLDB COLDB COLDB COLDB LOND COLDB COLDB LOND COLDB COLDB LOND COLDB COLDB<	B2K1X5	Lead	0.134		0 =	200.8 METALS ICPMS	PQL not provided by lab; result flagged with a "U" at the reported conc
Decide D	B21K12	lead	0.196		0 3	200.8 MFTALS ICPMS	POL not provided by lab: result flagged with a "U" at the reported conc
Micheler Folicide 1.9 99/2 1.9 0 2820 (NA) GARS Micheler Folicide 4.3 99/2 1.9 0 2820 (NA) GARS Micheler Folicide 4.3 99/2 1.9 0 0.00 (MICHA), GARS Micheler Folicide 4.3 99/2 1.9 0 0.00 (MICHA), GARS Nickel 4.3 99/2 1.0 0 0.00 (MICHA), GARS Nickel 4.3 99/2 1.0 0 0.00 (MICHA), GARS Nickel 4.0 1.0 0 0.00 (MICHA), GARS 0 0 0.00 (MICHA), GARS Nickel 4.0 1.0 0 0 0.00 (MICHA), GARS 0 0 0.00 (MICHA), GARS Nickel 4.0 1.0 0	B2LKL6	Lead	0.148		0 0	Т	PQL not provided by lab; result flagged with a "U" at the reported conc
Model M	B2KMD5	Methylene chloride	0.39	ug/L J	ם		Flagged with a U; ≥ MDL but ≤ PQL
Nodes 4.3 ug/L 8 0 000 MERIAS, CP Nodes 4.3 ug/L 8 0 000 MERIAS, CP Nodes 4.3 ug/L 8 0 0 000 MERIAS, CP Nodes 4.3 ug/L 8 0 0 000 MERIAS, CP Nodes 4.3 ug/L 8 0 0 000 MERIAS, CP Nodes 4.0 ug/L 8 0 0 000 MERIAS, CP Nodes 0.0 0 <td>B2LNX7</td> <td>Methylene chloride</td> <td>1.9</td> <td>ng/L J</td> <td>n</td> <td>8260_VOA_GCMS</td> <td>Flagged with a U; professional judgement</td>	B2LNX7	Methylene chloride	1.9	ng/L J	n	8260_VOA_GCMS	Flagged with a U; professional judgement
Nickel 49 49 49 6 0 0010 MERLAS, CP Nickel	B2JML5	Nickel	4.3		n	6010_METALS_ICP	PQL not provided by lab; result flagged with a "U" at the reported conc
Model 4.3 ugh' 8 U 6100 MFMLAS, CP Nickel 4.3 ugh' 8 U 6100 MFMLAS, CP Nickel 4.5 ugh' 8 U 6100 MFMLAS, CP OLLASTOCARREAGORA 0.0	B2JML9	Nickel	4.9		n	6010_METALS_ICP	PQL not provided by lab; result flagged with a "U" at the reported conc
Notesis R.2.2 ugh' RC U G010 MFMAS, ICP Notesis 1.05 ugh' RC U 6010 MFMAS, ICP Notesis 1.05 ugh' BC U	B2JMM5	Nickel	4.3		n	6010_METALS_ICP	PQL not provided by lab; result flagged with a "U" at the reported conc
Nickeit Nickeit 947 86.5 0 6000 METAS, SCP Nickeit 13.3 1947 86.5 0 6000 METAS, SCP Nickeit 13.3 1947 86.5 0 6000 METAS, SCP Nickeit 13.3 1947 86.5 0 6000 METAS, SCP Nickeit 13.3 19 0 8000 METAS, SCP 0 Nickeit 19.0 19.0 19.0 8000 METAS, SCP 0 Nickeit 19.0 19.0 19.0 8000 METAS, SCP 0 19.0 8000 METAS, SCP Nickeit 19.0 19.0 19.0 19.0 8000 METAS, SCP 0 19.0 8000 METAS, SCP 0 19.0	В2ЛТН8	Nickel	8.2		n	6010_METALS_ICP	PQL not provided by lab; result flagged with a "U" at the reported conc
Nickei Nickei 10 agh'l 8C U 6000 MFLAS; (C) Nickei 138 agh'l 8C U 6000 MFLAS; (C) Nickei 138 agh'l 8C U 6000 MFLAS; (C) Nickei 138 agh'l 8C U 6000 MFLAS; (C) Octachborolkenerofuran 0.000028 agh'l 8B U 8000 MFLAS; (C) Octachborolkenerofuran 0.000029 agh'l 8B U 8299, DONNIS GONS Octachborolkenerofuran 0.000029 agh'l 3B U 8299, DONNIS GONS Pertuchiorolkenerofuran 0.000029 agh'l <t< td=""><td>B2JTJ1</td><td>Nickel</td><td>4.9</td><td></td><td>n</td><td>6010_METALS_ICP</td><td>PQL not provided by lab; result flagged with a "U" at the reported conc</td></t<>	B2JTJ1	Nickel	4.9		n	6010_METALS_ICP	PQL not provided by lab; result flagged with a "U" at the reported conc
Mickel 103 ug/1 gf, 1 gf U G010 MFLAS, GP COLOMICAL STAND COLOMATICAL STAND COLOMATICAL STAND COLOMATICAL STAND GC U G010 MFLAS, GP GC COLOMATICAL STAND GC U GC GC GC U GC GC U GC GC U GC GC GC U GC GC U GC GC U GC GC <td>B2JTJ7</td> <td>Nickel</td> <td>10</td> <td></td> <td>n</td> <td>6010_METALS_ICP</td> <td>PQL not provided by lab; result flagged with a "U" at the reported conc</td>	B2JTJ7	Nickel	10		n	6010_METALS_ICP	PQL not provided by lab; result flagged with a "U" at the reported conc
NAME OCTATION OF ACTAINS NAME NAME OCTATION OF ACTAINS	валко	Nickel	10.3		O.	6010_METALS_ICP	PQL not provided by lab; result flagged with a "U" at the reported conc
Octabilization of the control 1997 619 9 2529 DOXIDAD COLD CASE (1997) <	B2JTX4	Nickel	5.00		0 :	6010 METALS ICP	PQL not provided by lab; result flagged with a "U" at the reported conc
Octabilization delication plant 991 81 9 Section Designation of D	BZN336	Octachlorodibenzoturan	0.0000019		0.3	8290 DIOXINS GCMS	Flagged with a U; ≥ PQL < 10x blank result
Controlleration of controlle	BZN3Cb	Octachlorodibenzoturan	0.000036		0 :	DIOXINS	Flagged with a U; 2 PUL < 10x blank result
Control Interference of the control	BONISCE	Octacino ouibenzo-p-dioxin	0.00003#		D =	8290 DIOVING GCMS	Flagged With a U. 2 FQL > 10X Did IX Tesuit
post of the displayer op 1 op 2	BONISE	Destachlorodikenzofurans	0.000013		0 =	8290 DIOVING GCMS	Flagged With a U. 2 FQL \ 10x blank result
Strontium 456 ug/L R 600 METALS JCP Inalium 46 ug/L 8C U 600 METALS JCP Inalium 46 ug/L 8C U 600 METALS JCP Inalium 50 ug/L 8CM U 600 METALS JCP Inalium 50 ug/L 8CM U 600 METALS JCP Inalium 30 ug/L BCM U 600 METALS JCP Inalium 30 ug/L BCM U 6000 METALS JCP	BZN3C6	Pentachlorodibenzofurans	0.0000074) 3	8290 DIOXINS GCMS	Flagged with a U: > POI < 10x blank result
Thailium 46 ag/L BC U 6010 METALS, ICP Thailium 60 ag/L BCA U 6010 METALS, ICP Thailium 59 ag/L BCA U 6010 METALS, ICP Thailium 50 ag/L BCA U 6010 METALS, ICP Thailium 302 ag/L BCA U 6010 METALS, ICP Total organic carbon 0.75 ag/L BCA U 6010 METALS, ICP Total organic carbon 0.565 mg/L BCA D 9060 TOC Total organic carbon 0.056 mg/L BCA D 9060 TOC Total organic carbon 0.056 mg/L BCA D 9060 TOC Total organic carbon 0.058	B2M1N3	Strontium	416		R	6010 METALS ICP	Rejected result; gross contamination
Thailium 40 μg/L BC U 6000 METALS, ICP Indilum 50 μg/L BCN U 6010 METALS, ICP Indilum 59 μg/L BCN U 6010 METALS, ICP Indilum 59 μg/L BCN U 6010 METALS, ICP Indilum 132 μg/L BCN U 6010 METALS, ICP Indilum 132 μg/L BCN U 6010 METALS, ICP Indilum 0.073 2.μg/L BCN U 6010 METALS, ICP Indilum 0.073 0.073 <td< td=""><td>B25NV0</td><td>Thallium</td><td>46</td><td></td><td>О</td><td>6010 METALS ICP</td><td>PQL not provided by lab; result flagged with a "U" at the reported conc</td></td<>	B25NV0	Thallium	46		О	6010 METALS ICP	PQL not provided by lab; result flagged with a "U" at the reported conc
Thailium 66 μg/L BCM U 6010 METALS, ICP Thailium 59 μg/L BCM U 6010 METALS, ICP Thailium 126 μg/L BCM U 6010 METALS, ICP Thailium 126 μg/L BCM U 6010 METALS, ICP Thailium 127 μg/L BCM U 6010 METALS, ICP Thailium 0.073 2 μg/L BCM U 6010 METALS, ICP Total organic carbon 0.0375 2 μg/L BCM H 6000 METALS, ICP Total organic carbon 0.568 mg/L H 9060, TOC OC Total organic carbon 0.588 mg/L H 9060, TOC OC Total organic carbon 0.588 mg/L H 9060, TOC OC Total organic carbon 0.588 mg/L H 9060, TOC OC Total organic carbon 0.536 mg/L B U 9060, TOC Total organic carbon	B25TK7	Thallium	40		n	6010_METALS_ICP	PQL not provided by lab; result flagged with a "U" at the reported conc
Thailium 90 μg/L BCN U 6010 METALS, ICP Thailium 68 μg/L BCN U 6010 METALS, ICP Thailium 122 μg/L BCN U 6010 METALS, ICP Inhailium 122 μg/L BCN U 6010 METALS, ICP Inhailium 0.073 μg/L BCN U 6010 METALS, ICP Inhailium 0.073 μg/L BCN U 6010 METALS, ICP Inhailium 0.073 μg/L μ 6010 METALS, ICP Inhailium 0.075 μg/L μ 6010 METALS, ICP Inhailium 0.075 μg/L μ 6020 METALS, ICP Inhailium 0.075 μg/L μ 6020 METALS, ICP Inthai organic carbon 0.58 mg/L μ 9060 TOC Intal organic carbon 0.036 mg/L μ 9060 TOC Intal organic carbon 0.0479 mg/L μ 9060 TOC Intal organic carbon	B26MC7	Thallium	69		n	6010_METALS_ICP	PQL not provided by lab; result flagged with a "U" at the reported conc
Thaillum 1991 Bg/L BCM U 6010 METAS, ICP Thaillum 132 9g/L BCM U 6010 METAS, ICP Thaillum 132 9g/L BCM U 6010 METAS, ICP Thaillum 132 2g/L BCM U 6010 METAS, ICP Thaillum 0.073 2 ug/L BCM U 6010 METAS, ICP Toland organic carbon 0.0375 2 ug/L BCM L 6010 METAS, ICP Total organic carbon 0.865 mg/L BC P 9060, TOC Total organic carbon 0.588 mg/L BC L 9060, TOC Total organic carbon 0.588 mg/L B L 9060, TOC Total organic carbon 0.588 mg/L B L 9060, TOC Total organic carbon 0.035 mg/L B L 9060, TOC Total organic carbon 0.035 mg/L B L 9060, TOC Total organic carbon	B26MC8	Thallium	50		n	6010_METALS_ICP	PQL not provided by lab; result flagged with a "U" at the reported conc
Thailum 68 ug/L BCN U 6010 METALS_1CP Thailum 132 ug/L BCN U 6010 METALS_1CP Thailum 75 ug/L BCN U 6010 METALS_1CP Total organic carbon 0.375 ug/L BCN U 6010 METALS_1CP Total organic carbon 0.385 mg/L J+ 9062, TOC Total organic carbon 0.588 mg/L J+ 9062, TOC Total organic carbon 0.588 mg/L J+ 9062, TOC Total organic carbon 0.685 mg/L B J+ 9062, TOC Total organic carbon 0.686 mg/L B J+ 9062, TOC Total organic carbon 0.358 mg/L B J+ 9062, TOC Total organic carbon 0.356 mg/L B J+ 9062, TOC Total organic carbon 0.372 mg/L J+ 9062, TOC Total organic carbon 0.372 mg/L J+ <th< td=""><td>B26MD2</td><td>Thallium</td><td>66</td><td></td><td>ח</td><td>6010_METALS_ICP</td><td>PQL not provided by lab; result flagged with a "U" at the reported conc</td></th<>	B26MD2	Thallium	66		ח	6010_METALS_ICP	PQL not provided by lab; result flagged with a "U" at the reported conc
Infallium 132 ug/L BENN U 0010 METALS, ICP Infallium 75 ug/L BEN U 0010 METALS, ICP Infallium 100 3073 ug/L BN U 6010 METALS, ICP Incle organic carbon 0.885 mg/L p+ 9662 TOC 9662 TOC Total organic carbon 0.583 mg/L p+ 9662 TOC Total organic carbon 0.583 mg/L p+ 9662 TOC Total organic carbon 0.583 mg/L p+ 9662 TOC Total organic carbon 0.136 mg/L p+ 9662 TOC Total organic carbon 0.136 mg/L p+ 9662 TOC Total organic carbon 0.136 mg/L p+ 9662 TOC Total organic carbon 0.236 mg/L p+ 9662 TOC Total organic carbon 0.451 mg/L p+ 9662 TOC Total organic carbon 0.732 mg/L p+ 9662 TOC Total o	B26MD3	Thallium	68		n :	6010_METALS_ICP	PQL not provided by lab; result flagged with a "U" at the reported conc
Infallunia 0.73 ugr. bun or pug.	BZ6MD/	Inallium	102		0 :	6010 METALS ICP	PQL not provided by lab; result flagged with a "U" at the reported conc
Total organic carbon 0.03 - 4 ug/L 1 mg/L 2 mg/L 2 mg/L 2 mg/L 2 mg/L 3 mg/L <td>BZBMID8</td> <td>Talliam</td> <td>5/ 5/</td> <td></td> <td>0</td> <td>6010_IMETALS_ICP</td> <td>PQL not provided by lab, result flagged with a "U" at the reported conc</td>	BZBMID8	Talliam	5/ 5/		0	6010_IMETALS_ICP	PQL not provided by lab, result flagged with a "U" at the reported conc
Total organic carbon 0.252 mg/L 77 5000, 10C Total organic carbon 0.553 mg/L 74 9060, 10C Total organic carbon 0.553 mg/L 74 9060, 10C Total organic carbon 0.568 mg/L 8 74 9060, 10C Total organic carbon 0.136 mg/L 8 14 9060, 10C Total organic carbon 0.136 mg/L 8 14 9060, 10C Total organic carbon 0.236 mg/L 8 1 9060, 10C Total organic carbon 0.236 mg/L 14 9060, 10C Total organic carbon 0.451 mg/L 14 9060, 10C Total organic carbon 0.732 mg/L 14 9060, 10C Total organic carbon 0.732 mg/L 14 9060, 10C Total organic carbon 0.731 mg/L 14 9060, 10C Total organic carbon 0.732 mg/L 14 9060, 10C Total organ	BZN3D4	Total oranic carbon	0.075		4	8260_VOA_GUNS	Fiagged With a U; 2 MUL but 5 PQL
Total organic carbon 0.553 mg/L + 5002_TOC Total organic carbon 0.553 mg/L ++ 9002_TOC Total organic carbon 0.588 mg/L ++ 9002_TOC Total organic carbon 0.588 mg/L ++ 9002_TOC Total organic carbon 0.68 mg/L ++ 9002_TOC Total organic carbon 0.356 mg/L ++ 9002_TOC Total organic carbon 0.356 mg/L ++ 9002_TOC Total organic carbon 0.315 mg/L ++ 9002_TOC Total organic carbon 0.315 mg/L ++ 9002_TOC Total organic carbon 0.321 mg/L ++ 9002_TOC Total organic carbon 0.439 mg/L ++ 9002_TOC Total organic carbon 0.439 mg/L ++ 9002_TOC Total organic carbon 0.439 mg/L ++ 9002_TOC Total organic carbon 0.539 ug/L 6 <td< td=""><td>B2ITI S</td><td>Total organic carbon</td><td>0.373</td><td>mg/L mg/l</td><td><u> </u></td><td>anen Toc</td><td>Estimated right "It": > PQL but < 10x the blank result</td></td<>	B2ITI S	Total organic carbon	0.373	mg/L mg/l	<u> </u>	anen Toc	Estimated right "It": > PQL but < 10x the blank result
Total organic carbon 0.763 mg/L ++ 9060_TOC Total organic carbon 0.588 mg/L ++ 9060_TOC Total organic carbon 0.688 mg/L ++ 9060_TOC Total organic carbon 0.136 mg/L ++ 9060_TOC Total organic carbon 0.336 mg/L ++ 9060_TOC Total organic carbon 0.336 mg/L ++ 9060_TOC Total organic carbon 0.13 mg/L ++ 9060_TOC Total organic carbon 0.451 mg/L ++ 9060_TOC Total organic carbon 0.451 mg/L ++ 9060_TOC Total organic carbon 0.451 mg/L ++ 9060_TOC Total organic carbon 0.452 mg/L ++ 9060_TOC Total organic carbon 0.453 mg/L ++ 9060_TOC Total organic carbon 0.539 mg/L ++ 9060_TOC Total organic carbon 0.549 mg/L ++ <	B2JTM4	Total organic carbon	0.563	mg/L	; ±	9060 TOC	Estimated high "1+": > POL but < 10x the blank result
Total organic carbon 0.588 mg/L j+ 9968_TOC Total organic carbon 0.136 mg/L 8 j+ 9062_TOC Total organic carbon 0.136 mg/L j+ 9062_TOC Total organic carbon 0.336 mg/L j+ 9062_TOC Total organic carbon 0.336 mg/L j+ 9062_TOC Total organic carbon 0.451 mg/L j+ 9062_TOC Total organic carbon 0.451 mg/L j+ 9062_TOC Total organic carbon 0.772 mg/L j+ 9062_TOC Total organic carbon 0.732 mg/L j+ 9062_TOC Total organic carbon 0.559 ug/L <	B2JV97	Total organic carbon	0.763	8/.r mg/L	<u>+</u>	9060 TOC	Estimated high "J+": > PQL but < 10x the blank result
Total organic carbon 0.668 mg/L 14 900G_TOC Total organic carbon 0.136 mg/L 14 900G_TOC Total organic carbon 0.53 mg/L 14 900G_TOC Total organic carbon 0.356 mg/L 14 900G_TOC Total organic carbon 0.15 mg/L 14 900G_TOC Total organic carbon 0.15 mg/L 14 900G_TOC Total organic carbon 0.745 mg/L 14 900G_TOC Total organic carbon 0.749 mg/L 14 900G_TOC Total organic carbon 0.749 mg/L 14 900G_TOC Total organic carbon 0.749 mg/L 14 900G_TOC Total organic carbon 0.759 mg/L 14 <td< td=""><td>B2JVC0</td><td>Total organic carbon</td><td>0.588</td><td>mg/L</td><td>. ±</td><td>9060_TOC</td><td>Estimated high "J+"; > PQL but < 10x the blank result</td></td<>	B2JVC0	Total organic carbon	0.588	mg/L	. ±	9060_TOC	Estimated high "J+"; > PQL but < 10x the blank result
Total organic carbon 0.45 mg/L 8 0 9000, 10C Total organic carbon 0.63 mg/L + 9060, 10C Total organic carbon 0.336 mg/L 8 0 9060, 10C Total organic carbon 0.13 mg/L 8 0 9060, 10C Total organic carbon 0.461 mg/L 1 9060, 10C Total organic carbon 0.439 mg/L 1 9060, 10C Total organic carbon 0.439 mg/L 1 9060, 10C Total organic carbon 0.701 mg/L 1 9060, 10C Total organic carbon 0.739 mg/L 1 9060, 10C Total organic carbon 0.539 mg/L 1 9060, 10C Total organic carbon 0.539 mg/L 1 9060, 10C Total organic carbon 0.539 mg/L 6 1 9060, 10C Total organic halides 0.539 mg/L 6 1 9060, 10C Total	B2JVC1	Total organic carbon	0.668	mg/L	+	9060_TOC	Estimated high "J+"; > PQL but < 10x the blank result
Total organic carbon 0.63 mg/L J+ 9000, TOC Total organic carbon 0.239 mg/L 6 J+ 9060, TOC Total organic carbon 0.45 mg/L 8 J+ 9060, TOC Total organic carbon 0.451 mg/L J+ 9060, TOC Total organic carbon 0.772 mg/L J+ 9060, TOC Total organic carbon 0.771 mg/L J+ 9060, TOC Total organic carbon 0.772 mg/L J+ 9060, TOC Total organic carbon 0.731 mg/L J+ 9060, TOC Total organic carbon 0.559 mg/L J+ 9060, TOC Total organic carbon 0.559 mg/L J+ 9060, TOC Total organic balides 6.59 ug/L B U 9060, TOC Total organic balides 6.59 ug/L B U 9000, TOC Varadium 27 ug/L B U 9000, METALS, ICP Van	B2KTT4	Total organic carbon	0.126	mg/L B	ח	9060_TOC	PQL not provided by lab; result flagged with a "U" at the reported conc
Total organic carbon 0.356 mg/L 6 1+ 9000, 10C Total organic carbon 0.15 mg/L 6 U 9060, 10C Total organic carbon 0.451 mg/L 1+ 9060, 10C Total organic carbon 0.772 mg/L 1+ 9060, 10C Total organic carbon 0.772 mg/L 1+ 9060, 10C Total organic carbon 0.479 mg/L 1+ 9060, 10C Total organic carbon 0.479 mg/L 1+ 9060, 10C Total organic carbon 0.459 mg/L 1+ 9060, 10C Total organic carbon 0.654 mg/L 1+ 9060, 10C Total organic halides 7.89 ug/L 8 U 9020, 10C Total organic halides 2.59 ug/L 8 U 9020, 10C Vanadium 2.78 ug/L 8 U 9020, 10C Vanadium 2.78 ug/L 8 U 9020, 10C Vana	B2KTV2	Total organic carbon	0.63	mg/L	± .	9060_TOC	Estimated high "J+"; > PQL but < 10x the blank result
Total organic carbon U.2.2 Hight 6 V 5000, LOC Total organic carbon 0.15 mg/L 1+ 9060, TOC Total organic carbon 0.772 mg/L 1+ 9060, TOC Total organic carbon 0.732 mg/L 1+ 9060, TOC Total organic carbon 0.701 mg/L 1+ 9060, TOC Total organic carbon 0.479 mg/L 1+ 9060, TOC Total organic carbon 0.479 mg/L 1+ 9060, TOC Total organic carbon 0.599 mg/L 1+ 9060, TOC Total organic carbon 0.599 mg/L 1+ 9060, TOC Total organic carbon 0.599 mg/L 8 0 9020, TOX Total organic halides 5.59 ug/L 8 0 9020, TOX Total organic halides 5.59 ug/L 8 0 9020, TOX Vanadium 27.8 ug/L 8 0 9020, TOX Vanadium<	BZKTWO	Total organic carbon	0.396		± =	9060_100	Estimated high "J+"; > PQL but < 10x the blank result
Total organic carbon 0.46i mg/L 1+ 9060_TOC Total organic carbon 0.772 mg/L 1+ 9060_TOC Total organic carbon 0.701 mg/L 1+ 9060_TOC Total organic carbon 0.479 mg/L 1+ 9060_TOC Total organic carbon 0.479 mg/L 1+ 9060_TOC Total organic carbon 0.599 mg/L 1+ 9060_TOC Total organic carbon 0.599 mg/L 1+ 9060_TOC Total organic halides 0.599 ug/L 6 0 9020_TOX Total organic halides 6.59 ug/L 6 0 9020_TOX Votal organic halides 5.59 ug/L 6 0 9020_TOX Variadium 2.78 ug/L 6 0 9020_TOX Variadium 2.78 ug/L 6 0 6010_METALS_ICP Variadium 8 0 6010_METALS_ICP 0 0 6010_METALS_ICP <t< td=""><td>B2KTY4</td><td>Total organic carbon</td><td>0.15</td><td></td><td>0 =</td><td>9060 TOC</td><td>POL not provided by lab; result flagged with a "U" at the reported conc</td></t<>	B2KTY4	Total organic carbon	0.15		0 =	9060 TOC	POL not provided by lab; result flagged with a "U" at the reported conc
Total organic curbon 0.772 mg/L j+ 9069_TOC Total organic curbon 0.701 mg/L j+ 9069_TOC Total organic curbon 0.701 mg/L j+ 9060_TOC Total organic curbon 0.703 mg/L j+ 9060_TOC Total organic curbon 0.599 mg/L j+ 9060_TOC Total organic curbon 0.589 mg/L j+ 9060_TOC Total organic curbon 0.589 mg/L j+ 9060_TOC Total organic curbon 0.589 ug/L g j 9060_TOC Total organic halides 6.59 ug/L g j 9060_TOC Total organic halides 6.59 ug/L g j 9020_TOX Vanadium 27.8 ug/L g j 6010_METALS_ICP Vanadium 28 ug/L g j 6010_METALS_ICP Zinc ug/L g j 6010_METALS_ICP Zinc ug/L	В2СКНЗ	Total organic carbon	0.461		, <u>+</u>	9060 TOC	Estimated high "J+"; > PQL but < 10x the blank result
Total organic carbon 1.3 mg/L j+ 9060_TOC Total organic carbon 0.701 mg/L j+ 9060_TOC Total organic carbon 0.479 mg/L j+ 9060_TOC Total organic carbon 0.564 mg/L j+ 9060_TOC Total organic carbon 0.564 mg/L j+ 9060_TOC Total organic carbon 7.89 ug/L g j 9060_TOC Total organic halides 5.59 ug/L g j 9020_TOC Total organic halides 5.59 ug/L g j 9020_TOC Vanadium 27.8 ug/L g j 9020_TOC Vanadium 27.8 ug/L g j 6010_MTRAS_GP Vanadium 27.8 ug/L g j 6010_MTRAS_GP Vanadium 8 ug/L g j 6010_MTRAS_GP Zinc 6.2 ug/L g j 6010_MTRAS_GP Zinc	В2СКНВ	Total organic carbon	0.772	mg/L	+	9060_TOC	Estimated high "J+"; > PQL but < 10x the blank result
Total organic carbon 0.701 mg/L J+ 9000, 10C Total organic carbon 0.479 mg/L J+ 9060, 10C Total organic carbon 0.599 mg/L J+ 9060, 10C Total organic carbon 0.649 mg/L B J+ 9060, 10C Total organic carbon 0.659 mg/L B J+ 9060, 10C Total organic halides 0.69 ug/L B U 9020, 10X Total organic halides 6.59 ug/L B U 9020, 10X Variadium 2.4 ug/L B U 9020, 10X Variadium 2.78 ug/L B U 6010, METALS, 1CP Variadium 2.78 ug/L B U 6010, METALS, 1CP Variadium 8 ug/L B U 6010, METALS, 1CP Variadium 8 ug/L B U 6010, METALS, 1CP Vor 0.00 ug/L B U 601	B2LKJ5	Total organic carbon	1.3	mg/L	+(9060_TOC	Estimated high "J+"; > PQL but < 10x the blank result
Total organic carbon 0.479 mg/L J++ 9060_1OC Total organic carbon 0.599 mg/L J++ 9060_1OC Total organic carbon 0.664 mg/L J++ 9060_1OC Total organic halides 0.664 mg/L B U 9020_1OX Total organic halides 6.59 ug/L B U 9020_1OX Vanadium 27 ug/L B U 6010_MFTALS_ICP Vanadium 27 ug/L B U 6010_MFTALS_ICP Vanadium 19,7 ug/L B U 6010_MFTALS_ICP Vanadium 8 0 6010_MFTALS_ICP 1000_MFTALS_ICP Vanadium 8 0 6010_MFTALS_ICP Zinc 0 0 0 0 Zinc 0	B2LKK1	Total organic carbon	0.701	mg/L	+	9060_TOC	Estimated high "J+"; > PQL but < 10x the blank result
Total organic carbon 0.559 mg/L 1+ 9060_10C Total organic carbon 0.664 mg/L 1+ 9060_10C Total organic halides 7.89 ug/L 8 U 9020_10X Total organic halides 5.59 ug/L 8 U 9020_10X Variadium 24 ug/L 8 U 6010_MFTALS_LCP Variadium 27 ug/L 8 U 6010_MFTALS_LCP Variadium 19.7 ug/L 8 U 6010_MFTALS_LCP Variadium 19.7 ug/L 8 U 6010_MFTALS_LCP Variadium 19.7 ug/L 8 U 6010_MFTALS_LCP Variadium 8 U 6010_MFTALS_LCP 6010_MFTALS_LCP American 8 U 6010_MFTALS_LCP 6010_MFTALS_LCP American 6 0 6010_MFTALS_LCP 6010_MFTALS_LCP 6010_MFTALS_LCP American 6 0 0 6010_MFTALS_LCP <	BZLKLZ	Total organic carbon	0.479	mg/L	+	9060_TOC	Estimated high "J+"; > PQL but < 10x the blank result
Total organic halides Lobel IMB/L B J+ 9000_10L Total organic halides 6.59 Ug/L B U 9020_10X Total organic halides 10.6 Ug/L B U 9020_10X Variadium 24 Ug/L BC U 6010_MRTALS_ICP Variadium 197 Ug/L B U 6010_MRTALS_ICP Variadium 197 Ug/L B U 6010_MRTALS_ICP Variadium 8 Ug/L B U 6010_MRTALS_ICP Variadium 8 Ug/L B U 6010_MRTALS_ICP Variadium 8 U 6010_MRTALS_ICP 0 6010_MRTALS_ICP Zinc 10 10 6010_MRTALS_ICP 0 6010_MRTALS_ICP Zinc 6 1 6010_MRTALS_ICP 0 6010_MRTALS_ICP	BZLKL6	Total organic carbon	0.599	mg/L	± :	9060_TOC	Estimated high "J+"; > PQL but < 10x the blank result
Total organic halides 6.59 ug/L 8 0 9020_TXX Total organic halides 10.6 ug/L 8 0 9020_TX Vanadium 24 ug/L 8 0 5020_TXX Vanadium 27.8 ug/L 8 0 6010_METALS_ICP Vanadium 19.7 ug/L 8 0 6010_METALS_ICP Vanadium 8 0 6010_METALS_ICP 0 6010_METALS_ICP Zinc 24.5 ug/L 8 0 6010_METALS_ICP Zinc 25.5 ug/L 8 0 6010_METALS_ICP Zinc 25.5 ug/L 8 0 6010_METALS_ICP	B2LKM4	Total organic halides	7 89	mg/L	± =	9060_10C	Estimated night "J+"; > PQL but < 10X the blank result POI not provided by lab result flagged with a "II" at the reported conc
Total organic halides 10.6 ug/L 8 U 90.02_TOX Vanadium 24 ug/L 8C U 6010_MRTALS_ICP Vanadium 27.8 ug/L 8 U 6010_MRTALS_ICP Vanadium 19.7 ug/L 8 U 6010_MRTALS_ICP Zinc 24.5 ug/L 8 U 6010_MRTALS_ICP Zinc 6.7 6.7 6.0 6010_MRTALS_ICP Zinc 6.7 6.0 6010_MRTALS_ICP Zinc 6.7 6.0 6010_MRTALS_ICP Zinc 6.7 6.7 6.0 6010_MRTALS_ICP	B2JVD8	Total organic halides	6.59		0 0	9020 TOX	not provided by lab
Vanadium 24 ug/L 8C U 6010_METALS_ICP Vanadium 1278 ug/L 1 5 6010_METALS_ICP Vanadium 197 ug/L 8 U 6010_METALS_ICP Zinc 245 ug/L 8 U 6010_METALS_ICP Zinc 67 ug/L 8 U 6010_METALS_ICP Zinc 67 ug/L 8 U 6010_METALS_ICP Zinc 67 ug/L 8 U 6010_METALS_ICP	B2KKL2	Total organic halides	10.6		n	9020_TOX	"U" at the
Vanadum 1278 ug/L J+ G010_METALS_ICP Vanadum 197 ug/L 8 U 6010_METALS_ICP Vanadum 8 ug/L 8 U 6010_METALS_ICP Zinc 245 ug/L 8C U 6010_METALS_ICP Zinc 67 ng/L 8C U 6010_METALS_ICP Zinc 67 ng/L 8C U 6010_METALS_ICP Zinc 67 ng/L 8C U 6010_METALS_ICP	B26732	Vanadium	24		n	6010_METALS_ICP	5
Vanadium 19.7 ug/L 8 U 6010_MFTALS_ICP Vanadium 8 0 6010_MFTALS_ICP Zhr 24.5 ug/L 8 U 6010_MFTALS_ICP Zhr 6.2 norL 8 U 6010_MFTALS_ICP Zhr 6.2 norL R I 6010_MFTALS_ICP	B2KK28	Vanadium	27.8		*	6010_METALS_ICP	Estimated high "J+"; > PQL but < 10x the blank result
Variabilum 8 UB/L B U DAL/METALS_LCF 7 inc 6.3 100,000 METALS_LCF 100,000 METALS_LCF 7 inc 6.3 100,000 METALS_LCF 100,000 METALS_LCF	BZKK3Z	Vanadium	19.7		<u> </u>	6010_METALS_ICP	PQL not provided by lab; result flagged with a "U" at the reported conc
710-C 710-C 6-C 9-C 9-C 9-C 9-C 9-C 9-C 9-C 9-C 9-C 9	B2KM79	Vanadium	24.5		<u>> =</u>	6010 METALS ICP	PQL not provided by lab; result flagged with a "U" at the reported conc
2) CIVITAL OTO 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	B2M1N3	Zinc	6.2		0 0	6010 METALS ICP	PQL not provided by lab: result flagged with a "U" at the reported conc

Table A-8. Summary of 2013 Sample Results Qualified Because of Method Blank, Preparation Blank or Field Blank Contamination

		Value	Value Reported					
Sample ID	Analyte Name	Reported	(AFTER VALIDATION)	Units	Lab Qualifier	Validation Qualifier	METHOD_NAME	Reason
B2NRM0	Arsenic	2.94		ug/L	BDC	U	200.8_METALS_ICPMS	PQL not provided by lab; result flagged with a "U" at the reported conc
B2NRM1	Arsenic	2.78		ug/L	BDC	U	200.8_METALS_ICPMS	PQL not provided by lab; result flagged with a "U" at the reported conc
B2NRM4	Arsenic	3.31		ug/L	BDC	U	200.8_METALS_ICPMS	PQL not provided by lab; result flagged with a "U" at the reported conc
B2NRM5	Arsenic	3.16		ug/L	BDC	U	200.8_METALS_ICPMS	PQL not provided by lab; result flagged with a "U" at the reported conc
B2NRM8	Arsenic	3.11		ug/L	BDC	U	200.8_METALS_ICPMS	PQL not provided by lab; result flagged with a "U" at the reported conc
B2NRM9	Arsenic	3.06		ug/L	BDC	U	200.8_METALS_ICPMS	PQL not provided by lab; result flagged with a "U" at the reported conc
B2NRN2	Arsenic	3.17		ug/L	BDC	U	200.8_METALS_ICPMS	PQL not provided by lab; result flagged with a "U" at the reported conc
B2NRN3	Arsenic	3.38		ug/L	BDC	U	200.8_METALS_ICPMS	PQL not provided by lab; result flagged with a "U" at the reported conc
B2NRP2	Arsenic	3.18		ug/L	BDC	U	200.8_METALS_ICPMS	PQL not provided by lab; result flagged with a "U" at the reported conc
B2NRP4	Arsenic	0.631		ug/L	BDC	U	200.8_METALS_ICPMS	PQL not provided by lab; result flagged with a "U" at the reported conc
B2N7L2	Carbon tetrachloride	1.3		ug/L	J	U	8260_VOA_GCMS	PQL not provided by lab; result flagged with a "U" at the reported conc
B2PXX2	Iron	47.7		ug/L	BC	U	6010_METALS_ICP	PQL not provided by lab; result flagged with a "U" at the reported conc
B2PXX4	Iron	28.7		ug/L	BC	U	6010_METALS_ICP	PQL not provided by lab; result flagged with a "U" at the reported conc
B2PXY0	Iron	372		ug/L	С	J+	6010_METALS_ICP	Estimated high "J+"; > PQL but < 10x the blank result
B2NVD9	Nickel	6.86		ug/L	BC	U	6010_METALS_ICP	PQL not provided by lab; result flagged with a "U" at the reported conc
B2NVH4	Nickel	12.8		ug/L	BC	U	6010_METALS_ICP	PQL not provided by lab; result flagged with a "U" at the reported conc
B2NVR0	Nickel	11.2		ug/L	BC	U	6010_METALS_ICP	PQL not provided by lab; result flagged with a "U" at the reported conc
B2P8K1	Nickel	10.6		ug/L	BC	U	6010_METALS_ICP	PQL not provided by lab; result flagged with a "U" at the reported conc
B2P8L6	Nickel	7.8		ug/L	BC	U	6010_METALS_ICP	PQL not provided by lab; result flagged with a "U" at the reported conc
B2P8L8	Nickel	5.3		ug/L	BC	U	6010_METALS_ICP	PQL not provided by lab; result flagged with a "U" at the reported conc
B2PJJ7	Nickel	6.4		ug/L	BC	U	6010_METALS_ICP	PQL not provided by lab; result flagged with a "U" at the reported conc
B2PJT5	Nickel	4		ug/L	BC	U	6010_METALS_ICP	PQL not provided by lab; result flagged with a "U" at the reported conc
B2NN38	Silver	9.35		ug/L	BC	U	6010_METALS_ICP	PQL not provided by lab; result flagged with a "U" at the reported conc
B2NN38	Silver	9.35		ug/L	BC	U	6010_METALS_ICP	PQL not provided by lab; result flagged with a "U" at the reported conc
B2N4W2	Total organic halides	11.7		ug/L	В	U	9020_TOX	PQL not provided by lab; result flagged with a "U" at the reported conc
B2N4Y2	Total organic halides	5.53		ug/L	В	U	9020_TOX	PQL not provided by lab; result flagged with a "U" at the reported conc
B2N5B4	Total organic halides	11.6		ug/L	В	U	9020_TOX	PQL not provided by lab; result flagged with a "U" at the reported conc
B2NVL2	Trichloroethene	4.2		ug/L		R	8260_VOA_GCMS	Rejected result; gross contamination
B2N4N6	Vanadium	14.2		ug/L	BC	U	6010_METALS_ICP	PQL not provided by lab; result flagged with a "U" at the reported conc
B2N784	Vanadium	26.9		ug/L	С	J+	6010_METALS_ICP	Estimated high "J+"; > PQL but < 10x the blank result
B2N799	Vanadium	25		ug/L	С	J+	6010_METALS_ICP	Estimated high "J+"; > PQL but < 10x the blank result

Table A-10. Summary of 2008 Sample Results Qualified Because Laboratory Control Samples Did not Meet QC Acceptance Criteria

		Value					
Sample ID	Analyte Name	Reported	Units	Lab Qualifier	Validation Qualifier	METHOD_NAME	Reason
B1Y2P7	Calcium	58600		Х	R	6010_METALS_ICP	Rejected; %R > 150%
B1Y2P8	Calcium	60000		Х	R	6010_METALS_ICP	Rejected; %R > 150%
B1W4X1	Gross alpha		pCi/L	U	J	ALPHA_GPC	Estimated; %R <80>40
B1W4Y3	Gross alpha		pCi/L	U	J	ALPHA_GPC	Estimated; %R <80>40
B1XRH4	Gross alpha	0.3	pCi/L	U	J	ALPHA_GPC	Estimated; %R <80>40
						9310_ALPHABETA_G	
B1Y2R0	Gross alpha	0.491		U	J	PC	Esimated; %R < 69-40%
B1VMJ7	Potassium	8950		Χ	J+	6010_METALS_ICP	Estimated high; %R >130 <150
B1VMJ8	Potassium	8870	ug/L	Χ	J+	6010_METALS_ICP	Estimated high; %R >130 <150
B1VMK0	Potassium	8720	ug/L	X	J+	6010_METALS_ICP	Estimated high; %R >130 <150
B1VMK1	Potassium	8840	ug/L	Х	J+	6010_METALS_ICP	Estimated high; %R >130 <150
B1VMK9	Potassium	8970	ug/L	Х	J+	6010_METALS_ICP	Estimated high; %R >130 <150
B1VML0	Potassium	8910	ug/L	Х	J+	6010_METALS_ICP	Estimated high; %R >130 <150
B1VR97	Potassium	9510	ug/L	Х	J+	6010 METALS_ICP	Estimated high; %R >130 <150
B1VR98	Potassium	9580		Х	J+	6010_METALS_ICP	Estimated high; %R >130 <150
B1W523	Tritium	5000	pCi/L		J-	TRITIUM_EIE_LSC	Estimated low: %R <80 >40
B1Y2N2	Tritium		pCi/L		J-	TRITIUM_EIE_LSC	Estimated low: %R <80 >40
B1Y2N6	Tritium		pCi/L		J-	TRITIUM EIE LSC	Estimated low: %R <80 >40
B1Y2P4	Tritium	2800	pCi/L		J-	TRITIUM EIE LSC	Estimated low: %R <80 >40
B1Y2R6	Tritium		pCi/L		J-	TRITIUM_EIE_LSC	Estimated low: %R <80 >40
B1Y2T0	Tritium		pCi/L		J-	TRITIUM_EIE_LSC	Estimated low: %R <80 >40
B1W4R2	Uranium-235		pCi/L	U	J	UISO_PLATE_AEA	Estimated; %R <70>40
B1W4R8	Uranium-235	-0.00685	•	U	j	UISO_PLATE_AEA	Estimated; %R <70>40
B1W4T4	Uranium-235	0.0347		U	J	UISO_PLATE_AEA	Estimated; %R <70>40
B1W4V0	Uranium-235		pCi/L	U		UISO_PLATE_AEA	Estimated; %R <70>40
B1W4V6	Uranium-235		pCi/L	U		UISO_PLATE_AEA	Estimated; %R <70>40
B1W502	Uranium-235		pCi/L		j-	UISO_PLATE_AEA	Estimated low: %R <70 >40
B1W538	Uranium-235	0.138			1-	UISO_PLATE_AEA	Estimated low: %R <70 >40
B1W562	Uranium-235	0.0305		U	li .	UISO PLATE AEA	Estimated; %R <70>40
B1W568	Uranium-235	0.0228		U	1	UISO_PLATE_AEA	Estimated; %R <70>40
B1W574	Uranium-235	-0.0031		U	j	UISO_PLATE_AEA	Estimated; %R <70>40
B1W586	Uranium-235	0.0654		U	1	UISO PLATE AEA	Estimated; %R <70>40
B1W592	Uranium-235		pCi/L	U	i i	UISO_PLATE_AEA	Estimated; %R <70>40
B1W598	Uranium-235	0.078		U	l'	UISO_PLATE_AEA	Estimated; %R <70>40
B1W5B4	Uranium-235	0.0659	1 5	U	1	UISO_PLATE_AEA	Estimated; %R <70>40
B1W5C0	Uranium-235	0.0039			1-	UISO_PLATE_AEA	Estimated low: %R <70 >40
B1W5C6	Uranium-235	0.0233	•	U	J-	UISO_PLATE_AEA	Estimated; %R <70>40
B1W5C8	Uranium-235	-0.0119		U	1	UISO_PLATE_AEA	Estimated; %R <70>40
B1W5F4	Uranium-235		pCi/L	U	1	UISO_PLATE_AEA	Estimated; %R <70>40
B1W5F4	Uranium-235		5	U	J.		
		0.0626		U	l l	UISO_PLATE_AEA	Estimated; %R <70>40
B1W5J8	Uranium-235	0.0779	pci/L	U	J	UISO_PLATE_AEA	Estimated; %R <70>40

Table A-11. Summary of 2009 Sample Results Qualified Because Laboratory Control Samples Did not Meet QC Acceptance Criteria

Sample ID	Analyte Name	Value Reported	Units	Lab Qualifier	Validation Qualifier	METHOD NAME	Reason
The second of th	Gross alpha		pCi/L	Lab Qualifier			Estimated low; %R <80 >40
	Gross alpha		pCi/L				Estimated low; %R <80 >40
B1YXN8	Oil and grease	2.1	mg/L	UN	J		Estimated; %R <78 >40
B1YXP4	Oil and grease	2.1	mg/L	UN	J	9070_OILGREASE	Estimated; %R <78 >40
B1YXR0	Oil and grease	2.1	mg/L	UN	J	9070_OILGREASE	Estimated; %R <78 >40
B1W580	Uranium-235	-0.00567	pCi/L	U	J	UISO_PLATE_AEA	Estimated; %R<70 >40

Table A-12. Summary of 2010 Sample Results Qualified Because Laboratory Control Samples Did not Meet QC Acceptance Criteria

		Value					
Sample ID	Analyte Name	Reported	Units	Lab Qualifier	Validation Qualifier	METHOD NAME	Reason
B24FC1	Gross alpha	6.8 pC	10.000.000		J-	ALPHA_GPC	Estimated low; %R <80 >40
B24FC5	Gross alpha	5.5 pC			J-	ALPHA_GPC	Estimated low; %R <80 >40
B24LK2	Gross alpha	2.7 pC			J-	ALPHA GPC	Estimated low; %R <80 >40
B24LK6	Gross alpha	2.1 pC	Ci/L		J-	ALPHA_GPC	Estimated low; %R <80 >40
B24LL0	Gross alpha	3.3 pC	Ci/L		J-	ALPHA_GPC	Estimated low; %R <80 >40
B24LL4	Gross alpha	2.4 pC	Ci/L		J-	ALPHA_GPC	Estimated low; %R <80 >40
B24MN9	Gross alpha	11 pC	Ci/L		J-	ALPHA_GPC	Estimated low; %R <80 >40
B24MR5	Gross alpha	2.2 pC	Ci/L	U	J	ALPHA_GPC	Estimated; %R <80 >40
B24MR9	Gross alpha	0.0059 pC	Ci/L	U	J	ALPHA_GPC	Estimated; %R <80 >40
B24MW6	Gross alpha	-0.65 pC	Ci/L	U	J	ALPHA_GPC	Estimated; %R <80 >40
B24N09	Gross alpha	2.4 pC	Ci/L		J-	ALPHA_GPC	Estimated low; %R <80 >40
B24N34	Gross alpha	2 pC	Ci/L		J-	ALPHA_GPC	Estimated low; %R <80 >40
B24N40	Gross alpha	-0.84 pC	Ci/L	U	J	ALPHA_GPC	Estimated; %R <80 >40
B288J4	Gross beta	360 pC	Ci/L		J+	BETA_GPC	Estimated high; %R>120 <150
B29TH7	Gross beta	14 pC	Ci/L		J+	BETA_GPC	Estimated high; %R>120 <150
B29TJ1	Gross beta	260 pC	Ci/L		J+	BETA_GPC	Estimated high; %R>120 <150
B283W2	Iron	61 ug	;/L	ВХ	J+	6010_METALS_ICP	Estimated high; %R>120 <150
B28D29	Iron	467 ug		Х	J+	6010_METALS_ICP	Estimated high; %R>120 <150
B29KL6	Iron	44 ug	;/L	BX	J+	6010_METALS_ICP	Estimated high; %R>120 <150
B27X18	Potassium	4370 ug	;/L	Х	J-	6010_METALS_ICP	Estimated low; %R< 40
B27X19	Potassium	4300 ug	;/L	Х	J-	6010_METALS_ICP	Estimated low; %R< 40
B27X24	Potassium	3230 ug	;/L	Х	J-	6010_METALS_ICP	Estimated low; %R< 40
B27X25	Potassium	3100 ug	;/L	Х	J-	6010_METALS_ICP	Estimated low; %R< 40
B24M51	Total alpha energy emitted from Radium	0.069 pC	Ci/L	U	J	RATOT_GPC	Estimated low; %R <80 >40
B24M52	Total alpha energy emitted from Radium	0.167 pC	Ci/L	U	J	RATOT_GPC	Estimated low; %R <80 >40
B24M53	Total alpha energy emitted from Radium	-0.003 pC	Ci/L	U	J	RATOT_GPC	Estimated low; %R <80 >40
B24M54	Total alpha energy emitted from Radium	0.286 pC	Ci/L	U	J	RATOT_GPC	Estimated low; %R <80 >40
B24M55	Total alpha energy emitted from Radium	-0.008 pC	Ci/L	U	J	RATOT_GPC	Estimated low; %R <80 >40
B24M58	Total alpha energy emitted from Radium	0.109 pC		U	J	RATOT_GPC	Estimated low; %R <80 >40
B25025	Total alpha energy emitted from Radium	0.018 p0	Ci/L	U	J	RATOT_GPC	Estimated low; %R <80 >40
B25040	Total alpha energy emitted from Radium	0.072 pC	Ci/L	U	J	RATOT_GPC	Estimated low; %R <80 >40
B25042	Total alpha energy emitted from Radium	0.058 pC	Ci/L	U	J	RATOT_GPC	Estimated low; %R <80 >40
B25048	Total alpha energy emitted from Radium	-0.046 pC	Ci/L	U	J	RATOT_GPC	Estimated low; %R <80 >40
B26541	Total alpha energy emitted from Radium	0.023 pC	Ci/L	U	J	RATOT_GPC	Estimated low; %R <80 >40
B26564	Total alpha energy emitted from Radium	0.09 pC	Ci/L	U	J	RATOT_GPC	Estimated low; %R <80 >40
						SRTOT_SEP_PRECIP	
B24LJ8	Total beta radiostrontium	0.63 pC		U	J	_GPC	Estimated; %R <80 >40
B26M88	Tritium	1900 pC			J-	TRITIUM_EIE_LSC	Estimated low; %R <80 >40
B26M93	Tritium	1800 pC	Ci/L		J-	TRITIUM_EIE_LSC	Estimated low; %R <80 >40
B26M98	Tritium	1900 pC	Ci/L		J-	TRITIUM_EIE_LSC	Estimated low; %R <80 >40
B27XC5	Tritium	1300 pC	Ci/L		J-	TRITIUM_EIE_LSC	Estimated low; %R <80 >40

Table A-13. Summary of 2011 Sample Results Qualified Because Laboratory Control Samples Did not Meet QC Acceptance Criteria

		Value					
Sample ID	Analyte Name	Reported	Units	Lab Qualifier	Validation Qualifier	METHOD_NAME	Reason
B2CK22	Gross beta	11	pCi/L		J+	BETA_GPC	Estimated high; %R >115 <150
B2CK32	Gross beta	10	pCi/L		J+	BETA_GPC	Estimated high; %R >115 <150
B2F3Y7	Gross beta	8.2	pCi/L		J+	BETA_GPC	Estimated high; %R >115 <150
B2JHH4	Sodium	19700	ug/L	Х	J+	6010_METALS_ICP	Estimated high; %R >120 <150
B2JHH7	Sodium	20600	ug/L	X	J+	6010_METALS_ICP	Estimated high; %R >120 <150
B2JHK1	Sodium	20400	ug/L	Х	J+	6010_METALS_ICP	Estimated high; %R >120 <150
В2ЈНК7	Sodium	20900	ug/L	X	J+	6010_METALS_ICP	Estimated high; %R >120 <150
B2B357	Total beta radiostrontium	4.3	pCi/L		J+	SRTOT_SEP_PRECIP_GPC	Estimated high; %R >120 <150
B2BPX5	Tritium	86000	pCi/L		J-	TRITIUM_EIE_LSC	Estimated low; %R <80 >40
B2BRW9	Tritium	3500	pCi/L		J-	TRITIUM_EIE_LSC	Estimated low; %R <80 >40
B2CK04	Tritium	100000	pCi/L		J-	TRITIUM_EIE_LSC	Estimated low; %R <80 >40
B2CK08	Tritium	250000	pCi/L		J-	TRITIUM_EIE_LSC	Estimated low; %R <80 >40
B2CK12	Tritium	1000000	pCi/L		J-	TRITIUM_EIE_LSC	Estimated low; %R <80 >40
B2CKK6	Tritium	7700	pCi/L		J-	TRITIUM_EIE_LSC	Estimated low; %R <80 >40
B2DRB5	Tritium	32000	pCi/L		J-	TRITIUM_EIE_LSC	Estimated low; %R <80 >40
B2DRF6	Tritium	6500	pCi/L		J-	TRITIUM_EIE_LSC	Estimated low; %R <80 >40
B2F462	Tritium	290000	pCi/L		J-	TRITIUM_EIE_LSC	Estimated low; %R <80 >40
B2F464	Tritium	920000	pCi/L		J-	TRITIUM_EIE_LSC	Estimated low; %R <80 >40
B2F3V3	Uranium	3.61	ug/L	D	J+	200.8_METALS_ICPMS	Estimated high; %R >115 <150

Table A-14. Summary of 2012 Sample Results Qualified Because Laboratory Control Samples Did not Meet QC Acceptance Criteria

		Value					
Sample ID	Analyte Name	Reported	Units	Lab Qualifier	Validation Qualifier	METHOD_NAME	Reason
B2N337	Aldrin	0.0095	ug/L	UO	R	8081_PEST_GC	Rejected; %R <76
B2KL65	Arsenic	2.1	ug/L		J-	200.8_METALS_ICPMS	Estimated low; %R<85 >40
B2KL67	Arsenic	2.19	ug/L	BD	J-	200.8_METALS_ICPMS	Estimated low; %R<85 >40
B2KL90	Arsenic	2.15	ug/L	BD	J-	200.8_METALS_ICPMS	Estimated low; %R<85 >40
B2KL94	Arsenic	1.95	ug/L	BD	J-	200.8_METALS_ICPMS	Estimated low; %R<85 >40
B2KLB2	Arsenic	2.92	ug/L	BD	J-	200.8_METALS_ICPMS	Estimated low; %R<85 >40
B2KLB4	Arsenic	2.09	ug/L	BD	J-	200.8_METALS_ICPMS	Estimated low; %R<85 >40
B2KLC2	Arsenic	2.9	ug/L	BD	J-	200.8_METALS_ICPMS	Estimated low; %R<85 >40
B2KLC4	Arsenic	2.59	ug/L	BD	J-	200.8_METALS_ICPMS	Estimated low; %R<85 >40

Table A-15. Summary of 2013 Sample Results Qualified Because Laboratory Control Samples Did not Meet QC Acceptance Criteria

		Value			Validation		
Sample ID	Analyte Name	Reported	Units	Lab Qualifier	Qualifier	METHOD_NAME	Reason
B2NVD4	Gross alpha	6	pCi/L		J-	ALPHA_GPC	Estimated low; %R <80 >40
B2PB76	Gross alpha	1.1	pCi/L	U	J	ALPHA_GPC	Estimated; %R <80 >40
B2THW8	Gross alpha	0.45	pCi/L	U	J-	ALPHA_GPC	Estimated low, %R<80
B2THX1	Gross alpha	1.6	pCi/L	U	J-	ALPHA_GPC	Estimated low, %R<80
B2THX5	Gross alpha	17	pCi/L		J-	ALPHA_GPC	Estimated low, %R<80
B2THY6	Gross alpha	2.3	pCi/L	U	J-	ALPHA_GPC	Estimated low, %R<80
B2NVD4	Gross beta	13	pCi/L		J-	BETA_GPC	Estimated low; %R <80 >40
B2PB76	Gross beta	350	pCi/L		J-	BETA_GPC	Estimated low; %R <80 >40

Table A-17. Summary of 2008 Sample Results Qualified Because MS/MSD Recoveries/RPDs Did Not Meet QC Acceptance Criteria

		Value					
Sample ID	Analyte Name	Reported	Units	Lab Qualifier	Validation Qualifier	METHOD_NAME	Reason
B1T4M4	Calcium	60700	ug/L	DN	J+	6010_METALS_ICP	Estimated high; %R >125
B1T4M6	Calcium	66000	ug/I	DN	1+	6010 METALS ICP	Estimated high; %R >125
B1TM22	Chloride	11900		D	I-	300.0 ANIONS IC	Estimated low; %R <80
B1TM25	Chloride	11300		D	I.	300.0 ANIONS IC	Estimated low; %R <80
B1TM40	Chloride	11700		D	I.	300.0 ANIONS IC	Estimated low; %R <80
B1V8C4	Chloride		mg/L	DN	1+	300.0 ANIONS IC	Estimated high; %R>120
31W559	Chloride	3620	0.	DN	J+	300.0 ANIONS IC	Estimated high; %R>120
31W595	Chloride	8280	ug/L	DN	J+	300.0 ANIONS IC	Estimated high; %R>120
31W5B1	Chloride	7220		DN	J+	300.0_ANIONS_IC	Estimated high; %R>120
31WKH9	Chloride	6600	0,	DN	I-	300.0 ANIONS IC	Estimated low; %R <80
31WKJ8	Chloride	6220	mg/L	DN	I.	300.0 ANIONS IC	Estimated low; %R <80
31XF17	Chloride	6640	•	DN	J-	300.0 ANIONS IC	Estimated low; %R <80
31XF25	Chloride	6780	O.	DN	J-	300.0 ANIONS IC	Estimated low; %R <80
31XF27	Chloride	6300		DN	J-	300.0 ANIONS IC	Estimated low; %R <80
31XF38	Chloride	6790	<u>.</u>	DN	J-	300.0_ANIONS_IC	Estimated low; %R <80
31XF40	Chloride	7060	ug/L ug/L	DN	J-	300.0_ANIONS_IC	Estimated low; %R <80
31XF40	Chloride	7120	8/	DN	J-	300.0_ANIONS_IC	Estimated low; %R <80
31XF42 31XF49	Chloride	6950	ug/L	DN	J-		The state of the s
31XF49 31XF59	2010/00/2010/00/2010	200000	O,	DN	J-	300.0_ANIONS_IC	Estimated low; %R <80
	Chloride	6080			J-	300.0_ANIONS_IC	Estimated low; %R <80
31XF61	Chloride	7110	O.	DN	J-	300.0_ANIONS_IC	Estimated low; %R <80
1WKH9	Fluoride		mg/L	BD	J+	300.0_ANIONS_IC	Estimated high; %R>120
31WKJ8	Fluoride	107	mg/L	BD	J+	300.0_ANIONS_IC	Estimated high; %R>120
31WYT6	Fluoride	53.5	mg/L	BDN	J+	300.0_ANIONS_IC	Estimated high; %R>120
31X0T1	Fluoride		mg/L	DN	J+	300.0_ANIONS_IC	Estimated high; %R>120
31X0T9	Fluoride	183	mg/L	DN	J+	300.0_ANIONS_IC	Estimated high; %R>120
31X0W5	Fluoride	193	mg/L	DN	J+	300.0_ANIONS_IC	Estimated high; %R>120
31XFB1	Fluoride	168	0,	BDN	J-	300.0_ANIONS_IC	Estimated low; %R <80
31W534	Iron	20	ug/L	U	R	6010_METALS_ICP	Rejected; %R <30
31W535	Iron	91.2	ug/L	В	J-	6010_METALS_ICP	Estimated low; %R <30
31W558	Iron	1080	0,	N	J-	6010_METALS_ICP	Estimated low; %R <30
31W559	Iron	328	ug/L		J-	6010_METALS_ICP	Estimated low; %R <75
31W564	Iron	20	ug/L	U	R	6010_METALS_ICP	Rejected; %R <30
31W565	Iron	118	ug/L	В	J-	6010_METALS_ICP	Estimated low; %R <30
31W582	Iron	20	ug/L	U	R	6010_METALS_ICP	Rejected; %R <30
31W583	Iron	37.2	ug/L	В	J-	6010_METALS_ICP	Estimated low; %R <30
31W588	Iron	21.5	ug/L	В	J-	6010_METALS_ICP	Estimated low; %R <30
31W589	Iron	538	ug/L		J-	6010_METALS_ICP	Estimated low; %R <75
31W594	Iron	211	ug/L	N	J-	6010_METALS_ICP	Estimated low; %R <30
31W595	Iron	20	ug/L	U	R	6010_METALS_ICP	Rejected; %R <30
31W5B0	Iron	72	ug/L	BN	J-	6010_METALS_ICP	Estimated low; %R <30
1W5B1	Iron	20	ug/L	U	R	6010_METALS_ICP	Rejected; %R <30
31W5C2	Iron	343	ug/L		J-	6010_METALS_ICP	Estimated low; %R <75
1W5C3	Iron	446	ug/L		J-	6010_METALS_ICP	Estimated low; %R <75
31W5D4	Iron	20	ug/L	U	R	6010_METALS_ICP	Rejected; %R <30
31W5D5	Iron	20	ug/L	U	R	6010_METALS_ICP	Rejected; %R <30
31W5H2	Iron	20	ug/L	U	R	6010_METALS_ICP	Rejected; %R <30
31W5H3	Iron	20		U	R	6010_METALS_ICP	Rejected; %R <30
31W2X0	Magnesium	20700	ug/L	N	J+	6010_METALS_ICP	Estimated high; %R >125
31W2X1	Magnesium	20700		N	J+	6010_METALS_ICP	Estimated high; %R >125
31W2X3	Magnesium	16600	ug/L	N	J+	6010 METALS ICP	Estimated high; %R >125
31W2X4	Magnesium	17100		N	J+	6010 METALS ICP	Estimated high; %R >125

Table A-17. Summary of 2008 Sample Results Qualified Because MS/MSD Recoveries/RPDs Did Not Meet QC Acceptance Criteria

Sample ID	Analyte Name	Value Reported	Units	Lab Qualifier	Validation Qualifier	METHOD_NAME	Reason
B1W358	Magnesium	8540	ug/L	N	J+	6010_METALS_ICP	Estimated high; %R >125
B1W359	Magnesium	8650	ug/L	N	J+	6010_METALS_ICP	Estimated high; %R >125
B1W534	Magnesium	23400	ug/L		J+	6010_METALS_ICP	Estimated high; %R >125
B1W535	Magnesium	23200	ug/L		J+	6010_METALS_ICP	Estimated high; %R >125
B1W558	Magnesium	11900	ug/L	N	J+	6010_METALS_ICP	Estimated high; %R >125
B1W559	Magnesium	12300	ug/L		J+	6010_METALS_ICP	Estimated high; %R >125
B1W564	Magnesium	11200	ug/L		J+	6010_METALS_ICP	Estimated high; %R >125
B1W565	Magnesium	10700	ug/L		J+	6010 METALS ICP	Estimated high; %R >125
B1W582	Magnesium	8140	ug/L		J+	6010_METALS_ICP	Estimated high; %R >125
B1W583	Magnesium	7940			J+	6010_METALS_ICP	Estimated high; %R >125
B1W588	Magnesium	73.9		В	J+	6010 METALS ICP	Estimated high; %R >125
B1W589	Magnesium	128	ug/L	В	J+	6010 METALS ICP	Estimated high; %R >125
B1W594	Magnesium	13300		N	J+	6010 METALS ICP	Estimated high; %R >125
B1W595	Magnesium	12700			J+	6010 METALS ICP	Estimated high; %R >125
B1W5B0	Magnesium	14100		N	J+	6010 METALS ICP	Estimated high; %R >125
B1W5B1	Magnesium	13400		8180	J+	6010 METALS ICP	Estimated high; %R >125
B1W5C2	Magnesium	7290	0		J+	6010 METALS ICP	Estimated high; %R >125
B1W5C3	Magnesium	7370	Ď,		J+	6010_METALS_ICP	Estimated high; %R >125
B1W5D4	Magnesium	14800			J+	6010 METALS ICP	Estimated high; %R >125
B1W5D5	Magnesium	15000			J+	6010 METALS ICP	Estimated high; %R >125
B1W5H2	Magnesium	15000	0		J+	6010 METALS ICP	Estimated high; %R >125
B1W5H3	Magnesium	14800			J+	6010 METALS ICP	Estimated high; %R >125
D1W3113	iviagnesium	14000	чь/ с		,,	OOTO_IVIETAES_ICI	Estimated high, 7017 > 125
B1XF17	Nitrogen in Nitrate	3990	ug/L	DN	J-	300.0_ANIONS_IC	Estimated low; %R <80
B1XF25	Nitrogen in Nitrate	4260	ug/L	DN	J-	300.0_ANIONS_IC	Estimated low; %R <80
B1XF27	Nitrogen in Nitrate	3850	ug/L	DN	J-	300.0_ANIONS_IC	Estimated low; %R <80
B1XF38	Nitrogen in Nitrate	3370	ug/L	DN	J-	300.0_ANIONS_IC	Estimated low; %R <80
B1XF40	Nitrogen in Nitrate	3250	ug/L	DN	J-	300.0_ANIONS_IC	Estimated low; %R <80
B1XF42	Nitrogen in Nitrate	3980	ug/L	DN	J-	300.0_ANIONS_IC	Estimated low; %R <80
B1XF51	Nitrogen in Nitrate	3380	ug/L	DN	J-	300.0_ANIONS_IC	Estimated low; %R <80
B1XF59	Nitrogen in Nitrate	2830	ug/L	DN	J-	300.0_ANIONS_IC	Estimated low; %R <80
B1XF61	Nitrogen in Nitrate	3900	•	DN	J-	300.0_ANIONS_IC	Estimated low; %R <80
B1RTM2	Nitrogen in Nitrite		mg/L	DNU	J	300.0_ANIONS_IC	Estimated; %R <80
B1RTM7	Nitrogen in Nitrite		mg/L	BDN	J-	300.0_ANIONS_IC	Estimated low; %R <80
B1RTP2	Nitrogen in Nitrite		mg/L	BDN	J-	300.0_ANIONS_IC	Estimated low; %R <80
B1TKC7	Nitrogen in Nitrite		mg/L	DNU	J	300.0_ANIONS_IC	Estimated; %R <80
B1V889	Nitrogen in Nitrite		mg/L	DNU	J	300.0_ANIONS_IC	Estimated; %R <80
B1V894	Nitrogen in Nitrite	19.8	0,	DNU	J	300.0_ANIONS_IC	Estimated; %R <80
B1V899	Nitrogen in Nitrite		mg/L	DNU	J	300.0_ANIONS_IC	Estimated; %R <80
B1V8B4	Nitrogen in Nitrite		mg/L	DNU	J	300.0_ANIONS_IC	Estimated; %R <80
B1V8B9	Nitrogen in Nitrite	19.8	mg/L	DNU	J	300.0_ANIONS_IC	Estimated; %R <80
B1T4M4	Potassium	4240	ug/L	BN	J-	6010_METALS_ICP	Estimated low; %R <75
B1T4M6	Potassium	2530	ug/L	BN	J-	6010_METALS_ICP	Estimated low; %R <75
B1TX04	Potassium	8750	ug/L	N	J-	6010_METALS_ICP	Estimated low; %R <75
B1TX41	Potassium	7370	ug/L	N	J-	6010_METALS_ICP	Estimated low; %R <75

Table A-17. Summary of 2008 Sample Results Qualified Because MS/MSD Recoveries/RPDs Did Not Meet QC Acceptance Criteria

Sample ID	Analyte Name	Value Reported	Units	Lab Qualifier	Validation Qualifier	METHOD_NAME	Reason
B1TX71	Potassium	2740	ug/L	N	J+	6010_METALS_ICP	Estimated high; %R >125
31TX72	Potassium	4040	ug/L	N	J+	6010_METALS_ICP	Estimated high; %R >125
31WYY8	Potassium	7180	ug/L	N	J+	6010_METALS_ICP	Estimated high; %R >125
31X010	Potassium	4440	ug/L	BN	J+	6010_METALS_ICP	Estimated high; %R >125
31X022	Potassium	7020	ug/L	N	J+	6010_METALS_ICP	Estimated high; %R >125
31X046	Potassium	6320	ug/L	N	J+	6010_METALS_ICP	Estimated high; %R >125
31X861	Potassium	7780	ug/L		J-	6010_METALS_ICP	Estimated low; %R <75
31X8T6	Potassium	7340	ug/L		J-	6010_METALS_ICP	Estimated low; %R <75
31X8V8	Potassium	7720	ug/L		J-	6010_METALS_ICP	Estimated low; %R <75
31X8V9	Potassium	7970	ug/L		J-	6010_METALS_ICP	Estimated low; %R <75
31VMJ7	Silver	5	ug/L	NU	R	6010_METALS_ICP	Rejected; %R <30
31VMJ8	Silver	5	ug/L	NU	R	6010_METALS_ICP	Rejected; %R <30
31VMK0	Silver	5	ug/L	NU	R	6010_METALS_ICP	Rejected; %R <30
31VMK1	Silver	5	ug/L	NU	R	6010_METALS_ICP	Rejected; %R <30
31VML1	Silver	5	ug/L	NU	R	6010_METALS_ICP	Rejected; %R <30
31VML2	Silver	5	ug/L	NU	R	6010_METALS_ICP	Rejected; %R <30
31VR43	Silver	5	ug/L	NU	R	6010_METALS_ICP	Rejected; %R <30
31VR44	Silver	5	ug/L	NU	R	6010_METALS_ICP	Rejected; %R <30
31VR97	Silver	5	ug/L	NU	R	6010_METALS_ICP	Rejected; %R <30
31VR98	Silver	5	ug/L	NU	R	6010_METALS_ICP	Rejected; %R <30
31W534	Silver		ug/L	UN	R	6010_METALS_ICP	Rejected; %R <30
31W535	Silver		ug/L	UN	R	6010_METALS_ICP	Rejected; %R <30
31W558	Silver	5	ug/L	U	R	6010_METALS_ICP	Rejected; %R <30
1W559	Silver	5.3	ug/L	BC	R	6010_METALS_ICP	Rejected; %R <30
31W564	Silver	5	ug/L	UN	R	6010_METALS_ICP	Rejected; %R <30
31W565	Silver	5	ug/L	UN	R	6010_METALS_ICP	Rejected; %R <30
31W582	Silver	5	ug/L	UN	R	6010_METALS_ICP	Rejected; %R <30
31W583	Silver	5	ug/L	UN	R	6010_METALS_ICP	Rejected; %R <30
31W588	Silver		ug/L	UN	R	6010_METALS_ICP	Rejected; %R <30
31W589	Silver	5	ug/L	UN	R	6010 METALS ICP	Rejected; %R <30
31W594	Silver		ug/L	U	R	6010_METALS_ICP	Rejected; %R <30
1W595	Silver		ug/L	ВС	R	6010 METALS ICP	Rejected; %R <30
1W5B0	Silver		ug/L	U	R	6010_METALS_ICP	Rejected; %R <30
31W5B1	Silver		ug/L	ВС	R	6010 METALS ICP	Rejected; %R <30
31W5C2	Silver		ug/L	UN	R	6010_METALS_ICP	Rejected; %R <30
31W5C3	Silver	5	ug/L	UN	R	6010 METALS ICP	Rejected; %R <30
31W5D4	Silver	5	ug/L	UN	R	6010_METALS_ICP	Rejected; %R <30
1W5D5	Silver		ug/L	UN	R	6010 METALS ICP	Rejected; %R <30
31W5H2	Silver	5	ug/L	UN	R	6010_METALS_ICP	Rejected; %R <30
1W5H3	Silver		ug/L	UN	R	6010_METALS_ICP	Rejected; %R <30
31T4M4	Sodium	20900	0.		J+	6010_METALS_ICP	Estimated high; %R >125
31T4M6	Sodium	23000			J+	6010 METALS ICP	Estimated high; %R >125
31WYT6	Technetium-99		pCi/L		J+	TC99_3MDSK_LSC	Estimated high; %R >125
B1WYX9	Technetium-99	A 100.00	pCi/L		J+	TC99_3MDSK_LSC	Estimated high; %R >125
31RVM6	Total organic carbon	337	mg/L	N	J-	9060_TOC	Estimated low; %R <75

Table A-18. Summary of 2009 Sample Results Qualified Because MS/MSD Recoveries/RPDs Did Not Meet QC Acceptance Criteria

		Value					
Sample ID	Analyte Name	Reported	Units	Lab Qualifier	Validation Qualifier	METHOD_NAME	Reason
B203P0	Chloride	12600	ug/L	DN	J	300.0_ANIONS_IC	Estimated; %R both high and low
B205T7	Chloride	6670	ug/L	DN	J	300.0_ANIONS_IC	Estimated; %R both high and low
B205V2	Chloride	6340	ug/L	DN	J	300.0_ANIONS_IC	Estimated; %R both high and low
B205X1	Chloride	6920	ug/L	DN	J	300.0_ANIONS_IC	Estimated; %R both high and low
B205X6	Chloride	6910	ug/L	DN	J	300.0_ANIONS_IC	Estimated; %R both high and low
B20RB5	Chloride	23600	ug/L	DN	J	300.0_ANIONS_IC	Estimated; %R both high and low
B20RC5	Chloride	12300	ug/L	DN	J	300.0_ANIONS_IC	Estimated; %R both high and low
B20RF1	Chloride	21900	ug/L	DN	J	300.0_ANIONS_IC	Estimated; %R both high and low
B20PL5	Chloride	20500	ug/L	DN	J	300.0_ANIONS_IC	Estimated; %R both high and low
B1YXN8	Oil and grease	2100	ug/L	UN	J	9070_OILGREASE	Estimated; %R < 78
B1YXP4	Oil and grease	2100	ug/L	UN	J	9070_OILGREASE	Estimated; %R < 78
B1YXR0	Oil and grease	2100	ug/L	UN	J	9070_OILGREASE	Estimated; %R < 78

Table A-19. Summary of 2010 Sample Results Qualified Because MS/MSD Recoveries/RPDs Did Not Meet QC Acceptance Criteria

		Value					
Sample ID	Analyte Name	Reported	Units	Lab Qualifier	Validation Qualifier	METHOD_NAME	Reason
B24LL7	Barium	28.4	ug/L	DN	J+	200.8_METALS_ICPMS	Estimated high; %R >125
B24LL8	Barium	28.4	ug/L	DN	J+	200.8_METALS_ICPMS	Estimated high; %R >125
B24LN0	Barium	69.3	ug/L	DN	J+	200.8_METALS_ICPMS	Estimated high; %R >125
B24LN1	Barium	62.9	ug/L	DN	J+	200.8_METALS_ICPMS	Estimated high; %R >125
B24LN4	Barium	37.1	ug/L	DN	J+	200.8_METALS_ICPMS	Estimated high; %R >125
B24LN5	Barium	40.4	ug/L	DN	J+	200.8_METALS_ICPMS	Estimated high; %R >125
В26МКО	Barium	50.5	ug/L	DN	J-	200.8_METALS_ICPMS	Estimated low; %R <30
B26MK1	Barium	23.3	ug/L	DN	J-	200.8_METALS_ICPMS	Estimated low; %R <30
B23FF8	Calcium	83800	ug/L	N	J+	6010_METALS_ICP	Estimated high; %R >125
B23FH4	Calcium	307	ug/L	N	J+	6010_METALS_ICP	Estimated high; %R >125
B23FK6	Calcium	43700	ug/L	N	J+	6010_METALS_ICP	Estimated high; %R >125
B23FK9	Calcium	37700	ug/L	N	J+	6010_METALS_ICP	Estimated high; %R >125
B23FL0	Calcium	83500	ug/L	N	J+	6010_METALS_ICP	Estimated high; %R >125
B23FK0	Chloride	8570	ug/L	DN	J+	300.0_ANIONS_IC	Estimated high; %R >125
B267Y1	Chloride	81100	ug/L	DN	J-	300.0_ANIONS_IC	Estimated low; %R <75
B267Y3	Chloride	5640	ug/L	DN	J-	300.0_ANIONS_IC	Estimated low; %R <75
B267Y4	Chloride	5410	ug/L	DN	J-	300.0_ANIONS_IC	Estimated low; %R <75
B26NF1	Chloride	11800	ug/L	DN	J+	300.0_ANIONS_IC	Estimated high; %R >125
B27BJ3	Chloride	12400	ug/L	DN	J-	300.0_ANIONS_IC	Estimated low; %R <75
B27BJ5	Chloride	21500	ug/L	DN	J-	300.0_ANIONS_IC	Estimated low; %R <75
B27BJ6	Chloride	21700		DN	J-	300.0_ANIONS_IC	Estimated low; %R <75
B27BJ7	Chloride	8270	ug/L	DN	J-	300.0_ANIONS_IC	Estimated low; %R <75
B27BJ8	Chloride	18300	ug/L	DN	J-	300.0_ANIONS_IC	Estimated low; %R <75
В27ВКО	Chloride	18800	ug/L	DN	J+	300.0_ANIONS_IC	Estimated high; %R >125
B24NV2	Fluoride	251	ug/L	BDN	J-	300.0_ANIONS_IC	Estimated low; %R <75
B24NV4	Fluoride		ug/L	BDN	J-	300.0_ANIONS_IC	Estimated low; %R <75
B27WL4	Iron	38	ug/L	UN	R	6010_METALS_ICP	Rejected; %R <30
B27WL5	Iron		ug/L	UN	R	6010_METALS_ICP	Rejected; %R <30
B27WM6	Iron	38	ug/L	UN	R	6010_METALS_ICP	Rejected; %R <30
B27WM7	Iron	539	ug/L	N	J-	6010_METALS_ICP	Estimated low; %R <30
B27WY0	Iron	1760	1 - 0	N	J-	6010_METALS_ICP	Estimated low; %R <30
B27WY1	Iron	547	ug/L	N	J-	6010_METALS_ICP	Estimated low; %R <30
B27XD6	Iron		ug/L	BN	J-	6010_METALS_ICP	Estimated low; %R <30
B27XD7	Iron		ug/L	N	J-	6010_METALS_ICP	Estimated low; %R <30
B28D28	Iron		ug/L	BN	J+	6010_METALS_ICP	Estimated high; %R >125
B27X18	Potassium	4370	ug/L	X	J-	6010_METALS_ICP	Estimated low; %R <30

Table A-19. Summary of 2010 Sample Results Qualified Because MS/MSD Recoveries/RPDs Did Not Meet QC Acceptance Criteria

		Value					
Sample ID	Analyte Name	Reported	Units	Lab Qualifier	Validation Qualifier	METHOD_NAME	Reason
B27X19	Potassium	4300	ug/L	Х	J-	6010_METALS_ICP	Estimated low; %R <30
B27X24	Potassium	3230	ug/L	Х	J-	6010_METALS_ICP	Estimated low; %R <30
B27X25	Potassium	3100	ug/L	Х	J-	6010_METALS_ICP	Estimated low; %R <30
B26747	Silver	5	ug/L	UN	R	6010_METALS_ICP	Rejected; %R <30
B26748	Silver	5	ug/L	UN	R	6010_METALS_ICP	Rejected; %R <30
B26924	Silver	5	ug/L	UN	R	6010_METALS_ICP	Rejected; %R <30
B26940	Silver	5	ug/L	UN	R	6010_METALS_ICP	Rejected; %R <30
B269J6	Silver	5	ug/L	UN	R	6010_METALS_ICP	Rejected; %R <30
B269J7	Silver	5	ug/L	UN	R	6010_METALS_ICP	Rejected; %R <30
B269J9	Silver	5	ug/L	UN	R	6010_METALS_ICP	Rejected; %R <30
B269K0	Silver	5	ug/L	UN	R	6010_METALS_ICP	Rejected; %R <30
B269K2	Silver	5	ug/L	UN	R	6010_METALS_ICP	Rejected; %R <30
B269K3	Silver	5	ug/L	UN	R	6010_METALS_ICP	Rejected; %R <30
B23FK0	Sulfate	41300	ug/L	DN	J+	300.0_ANIONS_IC	Estimated high; %R >125
B24PW0	Sulfate	106000	ug/L	DN	J-	300.0_ANIONS_IC	Estimated low; %R <75
B24T37	Sulfate	25000	ug/L	D	J-	300.0_ANIONS_IC	Estimated low; %R <75
B25T90	Sulfate	72900	ug/L	DN	J-	300.0_ANIONS_IC	Estimated low; %R <75
B23BN4	Total organic carbon	344	ug/L	BNX	J-	9060_TOC	Estimated low; %R <75
B268F1	Total organic halides	5	ug/L	UN	J	9020_TOX	Estimated; %R <75
B23DF8	Tritium	62000	pCi/L		J-	TRITIUM_EIE_LSC	Estimated low; %R <75
B23DH1	Tritium	50000	pCi/L		J-	TRITIUM_EIE_LSC	Estimated low; %R <75
B23DH4	Tritium	-17	pCi/L	U	J	TRITIUM_EIE_LSC	Estimated; %R <75
B23DK2	Tritium	23000	pCi/L		J-	TRITIUM_EIE_LSC	Estimated low; %R <75
B23DK4	Tritium	-77	pCi/L	U	J	TRITIUM_EIE_LSC	Estimated; %R <75
B23DL5	Tritium	2100	pCi/L		J-	TRITIUM_EIE_LSC	Estimated low; %R <75
B23FL0	Tritium	49000	pCi/L		J-	TRITIUM_EIE_LSC	Estimated low; %R <75

Table A-20. Summary of 2012 Sample Results Qualified Because MS/MSD Recoveries/RPDs Did Not Meet QC Acceptance Criteria

		Value					
Sample ID	Analyte Name	Reported	Units	Lab Qualifier	Validation Qualifier	METHOD_NAME	Reason
B2KTX6	Calcium	56300	ug/L		J+	6010_METALS_ICP	Estimated high; %R >125
B2KTY0	Calcium	57600	ug/L		J+	6010_METALS_ICP	Estimated high; %R >125
B2KV02	Calcium	78700	ug/L		J+	6010_METALS_ICP	Estimated high; %R >125
B2KV06	Calcium	78300	ug/L		J+	6010_METALS_ICP	Estimated high; %R >125
B2KV10	Calcium	82000	ug/L		J+	6010_METALS_ICP	Estimated high; %R >125
B2KV14	Calcium	81500	ug/L		J+	6010_METALS_ICP	Estimated high; %R >125
B2KV20	Calcium	68000	ug/L		J+	6010_METALS_ICP	Estimated high; %R >125
B2KV28	Calcium	68200	ug/L		J+	6010_METALS_ICP	Estimated high; %R >125
B2JPY9	Chloride	18800		DN	J+	300.0_ANIONS_IC	Estimated high; %R >120
B2MXF6	Chloride	24700	ug/L	D	J-	300.0_ANIONS_IC	Estimated low; %R <80
B2N1F3	Chloride	2860	ug/L	D	J-	300.0_ANIONS_IC	Estimated low; %R <80
B2N3D1	Chloride	25900	ug/L	D	J-	300.0_ANIONS_IC	Estimated low; %R <80
B2JTN7	Nitrogen in Nitrate	4450	ug/L	DN	J-	300.0_ANIONS_IC	Estimated low; %R <80
B2JTR1	Nitrogen in Nitrate	3720	ug/L	DN	J-	300.0_ANIONS_IC	Estimated low; %R <80
B2L9H8	Nitrogen in Nitrite	173	ug/L	BDN	J+	300.0_ANIONS_IC	Estimated high; %R >120
B2L9J1	Nitrogen in Nitrite	150	ug/L	BDN	J+	300.0_ANIONS_IC	Estimated high; %R >120
B2L9J4	Nitrogen in Nitrite	131	ug/L	BDN	J+	300.0_ANIONS_IC	Estimated high; %R >120
B2L9J6	Nitrogen in Nitrite	142	ug/L	BDN	J+	300.0_ANIONS_IC	Estimated high; %R >120
B2L9J9	Nitrogen in Nitrite	75.7	ug/L	BDN	J+	300.0_ANIONS_IC	Estimated high; %R >120
B2LBK0	Nitrogen in Nitrite	259	ug/L	DN	J+	300.0_ANIONS_IC	Estimated high; %R >120
B2LBK6	Nitrogen in Nitrite	219	ug/L	DN	J+	300.0_ANIONS_IC	Estimated high; %R >120
B2LBL2	Nitrogen in Nitrite	227	ug/L	DN	J+	300.0_ANIONS_IC	Estimated high; %R >120
B2LBP0	Nitrogen in Nitrite	197	ug/L	BDN	J+	300.0_ANIONS_IC	Estimated high; %R >120
B2JXB9	Silver	4	ug/L	UN	R	6010_METALS_ICP	Rejected; <30
B2JXD1	Silver	4	ug/L	UN	R	6010_METALS_ICP	Rejected; <30
B2JXF8	Silver	4	ug/L	UN	R	6010_METALS_ICP	Rejected; <30
B2KTX6	Sodium	24900			J-	6010_METALS_ICP	Estimated low; %R <75
B2KTY0	Sodium	23600	ug/L		J-	6010_METALS_ICP	Estimated low; %R <75
B2KV02	Sodium	21100	ug/L		J-	6010_METALS_ICP	Estimated low; %R <75
B2KV06	Sodium	21300	ug/L		J-	6010_METALS_ICP	Estimated low; %R <75
B2KV10	Sodium	23900	ug/L		J-	6010_METALS_ICP	Estimated low; %R <75
B2KV14	Sodium	25700	ug/L		J-	6010_METALS_ICP	Estimated low; %R <75
B2KV20	Sodium	19800	ug/L		J-	6010_METALS_ICP	Estimated low; %R <75
B2KV28	Sodium	20400			J-	6010_METALS_ICP	Estimated low; %R <75
B2K6M4	Sulfate	26200	ug/L	DN	J+	300.0_ANIONS_IC	Estimated high; %R >120
B2L9F5	Total organic carbon	159	ug/L	BN	J-	9060_TOC	Estimated low; %R <75
B2LB02	Total organic carbon	1740	ug/L	N	J+	9060_TOC	Estimated high; %R >125

Table A-20. Summary of 2012 Sample Results Qualified Because MS/MSD Recoveries/RPDs Did Not Meet QC Acceptance Criteria

		Value					
Sample ID	Analyte Name	Reported	Units	Lab Qualifier	Validation Qualifier	METHOD_NAME	Reason
B2LB04	Total organic carbon	2610	ug/L	N	J+	9060_TOC	Estimated high; %R >125
B2LB13	Total organic carbon	217	ug/L	BN	J-	9060_TOC	Estimated low; %R <75
B2LB20	Total organic carbon	212	ug/L	BN	J-	9060_TOC	Estimated low; %R <75
B2LBJ9	Total organic carbon	591	ug/L	N	J+	9060_TOC	Estimated high; %R >125
B2LBL7	Total organic carbon	7160	ug/L	N	J+	9060_TOC	Estimated high; %R >125

Table A-21. Summary of 2013 Sample Results Qualified Because MS/MSD Recoveries/RPDs Did Not Meet QC Acceptance Criteria

		Value					
Sample ID	Analyte Name	Reported	Units	Lab Qualifier	Validation Qualifier	METHOD_NAME	Reason
B2NRT7	Calcium	38700	ug/L	N	J-	6010_METALS_ICP	Estimated low; %R <75
B2NRV0	Calcium	37900	ug/L	N	J-	6010_METALS_ICP	Estimated low; %R <75
B2NRW2	Calcium	35100	ug/L	N	J-	6010_METALS_ICP	Estimated low; %R <75
B2NRW8	Calcium	34400	ug/L	N	J-	6010_METALS_ICP	Estimated low; %R <75
B2R617	Calcium	52700	ug/L	N	J-	6010_METALS_ICP	Estimated low; %R <75
B2N3P8	Chloride	13600	ug/L	D	J-	300.0_ANIONS_IC	Estimated low; %R <80
B2N4J5	Chloride	6180	ug/L	D	J+	300.0_ANIONS_IC	Estimated high; %R >120
B2N4K5	Chloride	6090	ug/L	D	J+	300.0_ANIONS_IC	Estimated high; %R >120
B2N4L0	Chloride	6500	ug/L	D	J+	300.0_ANIONS_IC	Estimated high; %R >120
B2N4L5	Chloride	6090	ug/L	D	J+	300.0_ANIONS_IC	Estimated high; %R >120
B2N4M9	Chloride	7600	ug/L	D	J+	300.0_ANIONS_IC	Estimated high; %R >120
B2N4N3	Chloride	7220	ug/L	D	J+	300.0_ANIONS_IC	Estimated high; %R >120
B2N6Y7	Chloride	14500	ug/L	D	J-	300.0_ANIONS_IC	Estimated low; %R <80
B2N700	Chloride	14700	ug/L	D	J-	300.0_ANIONS_IC	Estimated low; %R <80
B2N710	Chloride	12500	ug/L	D	J-	300.0_ANIONS_IC	Estimated low; %R <80
B2N791	Chloride	7420	ug/L	D	J-	300.0_ANIONS_IC	Estimated low; %R <80
B2N7B3	Chloride	6570	ug/L	DN	J+	300.0_ANIONS_IC	Estimated high; %R >120
B2NL04	Chloride	20800	ug/L	D	J+	300.0_ANIONS_IC	Estimated high; %R >120
B2NL10	Chloride	17400	ug/L	DN	J+	300.0_ANIONS_IC	Estimated high; %R >120
B2NL15	Chloride	18100	ug/L	D	J+	300.0_ANIONS_IC	Estimated high; %R >120
B2NL19	Chloride	19700	ug/L	D	J+	300.0_ANIONS_IC	Estimated high; %R >120
B2NL23	Chloride	23500	ug/L	DN	J+	300.0_ANIONS_IC	Estimated high; %R >120
B2NL28	Chloride	9330	ug/L	D	J+	300.0_ANIONS_IC	Estimated high; %R >120
B2NL34	Chloride	22000	ug/L	D	J+	300.0_ANIONS_IC	Estimated high; %R >120
B2NMB9	Chloride	23200	ug/L	DN	J+	300.0_ANIONS_IC	Estimated high; %R >120
B2NX43	Chloride	7380	ug/L	DN	J-	300.0_ANIONS_IC	Estimated low; %R <80
B2NX52	Chloride	3840	ug/L	DN	J-	300.0_ANIONS_IC	Estimated low; %R <80
B2NX59	Chloride	4420	ug/L	DN	J-	300.0_ANIONS_IC	Estimated low; %R <80
B2NXB3	Chloride	11600	ug/L	DN	J-	300.0_ANIONS_IC	Estimated low; %R <80
B2NXF9	Chloride	15000	ug/L	D	J+	300.0_ANIONS_IC	Estimated high; %R >120
B2PFK0	Chloride	6870	ug/L	DN	J+	300.0_ANIONS_IC	Estimated high; %R >120
B2R097	Chloride	20300	ug/L	DN	J-	300.0_ANIONS_IC	Estimated low; %R <80
B2R0B4	Chloride	21800		DN	J-	300.0_ANIONS_IC	Estimated low; %R <80
B2R134	Chloride	14000	ug/L	D	J-	300.0_ANIONS_IC	Estimated low; %R <80
B2R139	Chloride	166000	ug/L	D	J-	300.0_ANIONS_IC	Estimated low; %R <80
B2N3W3	Fluoride	186	ug/L	DN	J-	300.0_ANIONS_IC	Estimated low; %R <80
B2N725	Fluoride		ug/L	DN	J-	300.0_ANIONS_IC	Estimated low; %R <80
B2N7F8	Fluoride	448	ug/L	DN	J-	300.0_ANIONS_IC	Estimated low; %R <80

Table A-21. Summary of 2013 Sample Results Qualified Because MS/MSD Recoveries/RPDs Did Not Meet QC Acceptance Criteria

		Value					
Sample ID	Analyte Name	Reported	Units	Lab Qualifier	Validation Qualifier	METHOD_NAME	Reason
B2N7J6	Fluoride		ug/L	DN	J-	300.0_ANIONS_IC	Estimated low; %R <80
B2N7M5	Fluoride	47	ug/L	BDN	J-	300.0_ANIONS_IC	Estimated low; %R <80
B2NXF9	Fluoride	200	ug/L	DN	J+	300.0_ANIONS_IC	Estimated high; %R >120
B2R617	Magnesium	18900	ug/L	N	J-	6010_METALS_ICP	Estimated low; %R <75
B2N791	Nitrogen in Nitrate	4490	ug/L	D	J-	300.0_ANIONS_IC	Estimated low; %R <80
B2NXF9	Nitrogen in Nitrate	6400	ug/L	D	J+	300.0_ANIONS_IC	Estimated high; %R >120
B2R134	Nitrogen in Nitrate	6060	ug/L	D	J-	300.0_ANIONS_IC	Estimated low; %R <80
B2R140	Nitrogen in Nitrate	10400		D	J-	300.0_ANIONS_IC	Estimated low; %R <80
B2TLD7	Silver		ug/L	UN	J-	6010_METALS_ICP	Estimated low; %R <75
B2TLD8	Silver	5	ug/L	UN	J-	6010_METALS_ICP	Estimated low; %R <75
B2TLF0	Silver	5	ug/L	UN	J-	6010_METALS_ICP	Estimated low; %R <75
B2TLF2	Silver	5	ug/L	UN	J-	6010_METALS_ICP	Estimated low; %R <75
B2TLJ1	Silver	5	ug/L	UN	J-	6010_METALS_ICP	Estimated low; %R <75
B2TLJ3	Silver	5	ug/L	UN	J-	6010_METALS_ICP	Estimated low; %R <75
B2NVD4	Sodium	27300	ug/L		J-	6010_METALS_ICP	Estimated low; %R <75
B2N3W3	Sulfate	77000	ug/L	D	J-	300.0_ANIONS_IC	Estimated low; %R <80
B2N705	Sulfate	69700	ug/L	D	J-	300.0_ANIONS_IC	Estimated low; %R <80
B2N725	Sulfate	91400	ug/L	D	J-	300.0_ANIONS_IC	Estimated low; %R <80
B2N7B7	Sulfate	44500	ug/L	D	J-	300.0_ANIONS_IC	Estimated low; %R <80
B2N7C1	Sulfate	48400	ug/L	D	J-	300.0_ANIONS_IC	Estimated low; %R <80
B2NXB2	Sulfate	33800	ug/L	D	J-	300.0_ANIONS_IC	Estimated low; %R <80
B2NXB3	Sulfate	42100	ug/L	D	J-	300.0_ANIONS_IC	Estimated low; %R <80
B2NXB6	Sulfate	35800	ug/L	D	J-	300.0_ANIONS_IC	Estimated low; %R <80
B2NXB7	Sulfate	25900		D	J-	300.0_ANIONS_IC	Estimated low; %R <80
B2PJF4	Sulfate	28300		D	J-	300.0_ANIONS_IC	Estimated low; %R <80
B2PJV0	Sulfate	29700	ug/L	D	J+	300.0_ANIONS_IC	Estimated high; %R >120
В2РЈҮЗ	Sulfate	64800		D	J+	300.0_ANIONS_IC	Estimated high; %R >120
D2DCD2				201		200.8_METALS_ICP	
B2R6D3	Uranium	6.03	ug/L	DN	J+	MS	Estimated high; %R >130

Table A-23. Summary of 2008 Sample Results Qualified Because Surrogate Recoveries Did Not Meet QC Acceptance Criteria

		Value						
Sample ID	Analyte Name	Reported	U	Inits	Lab Qualifier	Validation Qualifier	METHOD_NAME	Reason
B1W4Y1	1,2-Dibromo-3-chloropropane	0.48	ug/L	ι	JT	J	8260_VOA_GCMS	Estimated; %R <79 >20
B1W593	2,4-Dichlorophenol	1	ug/L	Ĺ	J	R	8270_SVOA_GCMS	Rejected; %R <20
B1W593	2,4-Dinitrophenol	2	ug/L	L	J	R	8270_SVOA_GCMS	Rejected; %R <20
B1W593	2-Methylphenol (cresol, o-)	2	ug/L	ι	J	R	8270_SVOA_GCMS	Rejected; %R <20
B1W593	2-Nitrophenol	1	ug/L	ι	J	R	8270_SVOA_GCMS	Rejected; %R <20
B1W593	3+4 Methylphenol (cresol, m+p)	1	ug/L	Ų	J	R	8270_SVOA_GCMS	Rejected; %R <20
B1TXH0	4,4'-DDD (Dichlorodiphenyldichloroethane)	0.0075	ug/L	L	J	J	8081_PEST_GC	Estimated; %R >10 <30
B1TXH0	4,4'-DDE (Dichlorodiphenyldichloroethylene)	0.013	ug/L	U	J	J	8081_PEST_GC	Estimated; %R >10 <30
B1TXH0	4,4'-DDT (Dichlorodiphenyltrichloroethane)	0.013	ug/L	L	J	J	8081_PEST_GC	Estimated; %R >10 <30
B1TXH0	Aldrin	0.0044	ug/L	L	J	J	8081_PEST_GC	Estimated; %R >10 <30
B1TXH0	Alpha-BHC	0.0031	ug/L	L	J	J	8081_PEST_GC	Estimated; %R >10 <30
B1TXH0	beta-1,2,3,4,5,6-Hexachlorocyclohexane (beta-BHC)	0.015	ug/L	U	J	J	8081_PEST_GC	Estimated; %R >10 <30
B1W4Y1	Bromomethane	0.5	ug/L	ι	JT	J	8260_VOA_GCMS	Estimated; %R <79 >20
B1TXH0	Chlordane	0.099	ug/L	L	J	J	8081_PEST_GC	Estimated; %R >10 <30
B1TXH0	Delta-BHC	0.0046	ug/L	ι	J	J	8081_PEST_GC	Estimated; %R >10 <30
B1TXH0	Dieldrin	0.0057	ug/L	U	J	J	8081_PEST_GC	Estimated; %R >10 <30
B1TXH0	Endosulfan I	0.0078	ug/L	ι	J	J	8081_PEST_GC	Estimated; %R >10 <30
B1TXH0	Endosulfan II	0.0053	ug/L	l	J	J	8081_PEST_GC	Estimated; %R >10 <30
B1TXH0	Endosulfan sulfate	0.0063	ug/L	L	J	J	8081_PEST_GC	Estimated; %R >10 <30
B1TXH0	Endrin	0.0068	ug/L	Ĺ	J	J	8081_PEST_GC	Estimated; %R >10 <30
B1TXH0	Endrin aldehyde	0.009	ug/L	U	J	J	8081_PEST_GC	Estimated; %R >10 <30
B1TXH0	Gamma-BHC (Lindane)	0.0032	ug/L	U	J	J	8081_PEST_GC	Estimated; %R >10 <30
B1TXH0	Heptachlor	0.034	ug/L	L	JN	J	8081_PEST_GC	Estimated; %R >10 <30
B1TXH0	Heptachlor epoxide	0.0062	ug/L	L	J	J	8081_PEST_GC	Estimated; %R >10 <30
B1TXH0	Methoxychlor	0.01	ug/L	U	J	J	8081_PEST_GC	Estimated; %R >10 <30
B1W593	Pentachlorophenol	2	ug/L	L	J	R	8270_SVOA_GCMS	Rejected; %R <20
B1W593	Phenol	4	ug/L	l	J	R	8270_SVOA_GCMS	Rejected; %R <20
B1TXH0	Toxaphene	0.59	ug/L	U	J	J	8081_PEST_GC	Estimated; %R >10 <30

Table A-24. Summary of 2009 Sample Results Qualified Because Surrogate Recoveries Did Not Meet QC Acceptance Criteria

		Value					
Sample ID	Analyte Name	Reported	Units	Lab Qualifier	Validation Qualifier	METHOD_NAME	Reason
B1Y6X2	2,3,4,6-Tetrachlorophenol	2	ug/L	UN	R	8040_PHENOLIC_GC	Rejected; %R <20
B1Y6X2	2,4,5-Trichlorophenol	2.2	ug/L	UN	R	8040_PHENOLIC_GC	Rejected; %R <20
B1YXP4	2,4,5-Trichlorophenol	2	ug/L	U	J	8270_SVOA_GCMS	Estimated; %R <47 >20
B1Y6X2	2,4,6-Trichlorophenol	2.2	ug/L	UN	R	8040_PHENOLIC_GC	Rejected; %R <20
B1YXP4	2,4,6-Trichlorophenol	2	ug/L	U	J	8270_SVOA_GCMS	Estimated; %R <47 >20
B1Y6X2	2,4-Dichlorophenol	2.1	ug/L	UN	R	8040_PHENOLIC_GC	Rejected; %R <20
B1YXP4	2,4-Dichlorophenol	1	ug/L	U	J	8270_SVOA_GCMS	Estimated; %R <47 >20
B204Y7	2,4-Dichlorophenol	2.1	ug/L	UN	R	8040_PHENOLIC_GC	Rejected; %R <20
B1Y6X2	2,4-Dimethylphenol	2.1	ug/L	UN	R	8040_PHENOLIC_GC	Rejected; %R <20
B1YXP4	2,4-Dimethylphenol	1	ug/L	U	J	8270_SVOA_GCMS	Estimated; %R <47 >20
B1Y6X2	2,4-Dinitrophenol	2.4	ug/L	UN	R	8040_PHENOLIC_GC	Rejected; %R <20
B1YXP4	2,4-Dinitrophenol	2	ug/L	U	J	8270_SVOA_GCMS	Estimated; %R <47 >20
B1Y6X2	2,6-Dichlorophenol	2.1	ug/L	UN	R	8040_PHENOLIC_GC	Rejected; %R <20
B1YXP4	2,6-Dichlorophenol	1	ug/L	U	J	8270_SVOA_GCMS	Estimated; %R <47 >20
B1Y6X2	2-Chlorophenol	2.2	ug/L	UN	R	8040_PHENOLIC_GC	Rejected; %R <20
B1YXP4	2-Chlorophenol	1	ug/L	U	J	8270_SVOA_GCMS	Estimated; %R <47 >20
B1Y6X2	2-Methylphenol (cresol, o-)	2.2	ug/L	UN	R	8040_PHENOLIC_GC	Rejected; %R <20
B1YXP4	2-Methylphenol (cresol, o-)	2	ug/L	U	J	8270_SVOA_GCMS	Estimated; %R <47 >20
B1Y6X2	2-Nitrophenol	2.3	ug/L	UN	R	8040_PHENOLIC_GC	Rejected; %R <20
B1YXP4	2-Nitrophenol	1	ug/L	U	J	8270_SVOA_GCMS	Estimated; %R <47 >20
B1Y6X2	3+4 Methylphenol (cresol, m+p)	2.2	ug/L	UN	R	8040_PHENOLIC_GC	Rejected; %R <20
B1Y6X2	4,6-Dinitro-2-methylphenol	2.2	ug/L	UN	R	8040_PHENOLIC_GC	Rejected; %R <20
B1YXP4	4,6-Dinitro-2-methylphenol	2	ug/L	U	J	8270_SVOA_GCMS	Estimated; %R <47 >20
B1Y6X2	4-Chloro-3-methylphenol	2.4	ug/L	UN	R	8040_PHENOLIC_GC	Rejected; %R <20
B1YXP4	4-Chloro-3-methylphenol	1	ug/L	U	J	8270_SVOA_GCMS	Estimated; %R <47 >20
B1YXP4	4-Methylphenol (cresol, p-)	20	ug/L	U	J	8270_SVOA_GCMS	Estimated; %R <47 >20
B1Y6X2	4-Nitrophenol	2.2	ug/L	UN	R	8040_PHENOLIC_GC	Rejected; %R <20
B1YXP4	4-Nitrophenol	2	ug/L	U	J	8270_SVOA_GCMS	Estimated; %R <47 >20
B204Y7	4-Nitrophenol	2.2	ug/L	UN	R	8040_PHENOLIC_GC	Rejected; %R <20
B1Y6X2	Dinoseb(2-secButyl-4,6-dinitrophenol)		ug/L	UN	R	8040_PHENOLIC_GC	Rejected; %R <20
B1Y6X2	Pentachlorophenol		ug/L	UN	R	8040_PHENOLIC_GC	Rejected; %R <20
B1YXP4	Pentachlorophenol		ug/L	U	J	8270_SVOA_GCMS	Estimated; %R <47 >20
B1Y6X2	Phenol		ug/L	UN	R	8040_PHENOLIC_GC	Rejected; %R <20
B1YXP4	Phenol	4	ug/L	U	J	8270_SVOA_GCMS	Estimated; %R <47 >20

Table A-25. Summary of 2010 Sample Results Qualified Because Surrogate Recoveries Did Not Meet QC Acceptance Criteria

		Value					
Sample ID	Analyte Name	Reported	Units	Lab Qualifier	Validation Qualifier	METHOD_NAME	Reason
B25M04	1,2,4-Trichlorobenzene	+	ug/L		J	8270_SVOA_GCMS	Estimated; %R < 41 >20
B25M09	1,2,4-Trichlorobenzene		ug/L	U	J	8270_SVOA_GCMS	Estimated; %R < 41 >20
B25M14	1,2,4-Trichlorobenzene		ug/L	U	J	8270_SVOA_GCMS	Estimated; %R < 41 >20
B25M04	1,2-Dichlorobenzene		ug/L	U	J	8270_SVOA_GCMS	Estimated; %R < 20
B25M09	1,2-Dichlorobenzene		ug/L	U	J	8270_SVOA_GCMS	Estimated; %R < 20
B25M14	1,2-Dichlorobenzene		ug/L	U	J	8270_SVOA_GCMS	Estimated; %R < 20
B25M04	1,3-Dichlorobenzene		ug/L	U	J	8270_SVOA_GCMS	Estimated; %R < 20
B25M09	1,3-Dichlorobenzene		ug/L	U	J	8270_SVOA_GCMS	Estimated; %R < 20
B25M14	1,3-Dichlorobenzene		ug/L	U	J	8270_SVOA_GCMS	Estimated; %R < 20
B25M04	2,4,5-Trichlorophenol		ug/L	U	J	8270_SVOA_GCMS	Estimated; %R < 41 >20
B25M09	2,4,5-Trichlorophenol		ug/L	U	J	8270_SVOA_GCMS	Estimated; %R < 41 >20
B25M14	2,4,5-Trichlorophenol	1	ug/L	U	J	8270_SVOA_GCMS	Estimated; %R < 41 >20
B25M04	2,4,6-Trichlorophenol	1	ug/L	U	J	8270_SVOA_GCMS	Estimated; %R < 41 > 20
B25M09	2,4,6-Trichlorophenol	1	ug/L	U	J	8270_SVOA_GCMS	Estimated; %R < 41 > 20
B25M14	2,4,6-Trichlorophenol		ug/L	U	J	8270_SVOA_GCMS	Estimated; %R < 41 > 20
B25M04	2,4-Dichlorophenol	1	ug/L	U	J	8270_SVOA_GCMS	Estimated; %R < 41 >20
B25M09	2,4-Dichlorophenol	1	ug/L	U	J	8270_SVOA_GCMS	Estimated; %R < 41 >20
B25M14	2,4-Dichlorophenol	1	ug/L	U	J	8270_SVOA_GCMS	Estimated; %R < 41 >20
B25M04	2,4-Dimethylphenol	1	ug/L	U	J	8270_SVOA_GCMS	Estimated; %R < 41 > 20
B25M09	2,4-Dimethylphenol	1	ug/L	U	J	8270_SVOA_GCMS	Estimated; %R < 41 > 20
B25M14	2,4-Dimethylphenol	1	ug/L	U	J	8270 SVOA GCMS	Estimated; %R < 41 > 20
B25M04	2,4-Dinitrophenol	2	ug/L	U	J	8270 SVOA GCMS	Estimated; %R < 41 > 20
B25M09	2,4-Dinitrophenol	+	ug/L	U	J	8270 SVOA GCMS	Estimated; %R < 41 > 20
B25M14	2,4-Dinitrophenol	2	ug/L	U	J	8270 SVOA GCMS	Estimated; %R < 41 > 20
B25M04	2,4-Dinitrotoluene		ug/L	U	J	8270 SVOA GCMS	Estimated; %R < 41 > 20
B25M09	2.4-Dinitrotoluene		ug/L	U	J	8270 SVOA GCMS	Estimated; %R < 41 >20
B25M14	2,4-Dinitrotoluene		ug/L	U	J	8270 SVOA GCMS	Estimated; %R < 41 >20
B25M04	2,6-Dinitrotoluene		ug/L	U	J	8270 SVOA GCMS	Estimated; %R < 41 > 20
B25M09	2.6-Dinitrotoluene		ug/L	U	J	8270 SVOA GCMS	Estimated; %R < 41 >20
B25M14	2.6-Dinitrotoluene		ug/L	U	1	8270 SVOA GCMS	Estimated; %R < 41 >20
B25M04	2-Chloronaphthalene	1	ug/L	Ū	j	8270 SVOA GCMS	Estimated; %R < 41 > 20
B25M09	2-Chloronaphthalene	1	ug/L	U	1	8270_SVOA_GCMS	Estimated; %R < 41 > 20
B25M14	2-Chloronaphthalene	1	ug/L	U	T ₁	8270_SVOA_GCMS	Estimated; %R < 41 >20
B25M04	2-Chlorophenol	1	ug/L	U	1	8270 SVOA GCMS	Estimated; %R < 20
B25M09	2-Chlorophenol		ug/L	U	1	8270 SVOA GCMS	Estimated; %R < 20
B25M14	2-Chlorophenol		ug/L	U	1	8270 SVOA GCMS	Estimated; %R < 20
B25M04	2-Methylnaphthalene		ug/L	U	1	8270 SVOA GCMS	Estimated; %R < 41 >20
B25M09	2-Methylnaphthalene		ug/L	U	i	8270_SVOA_GCMS	Estimated; %R < 41 >20
B25M14	2-Methylnaphthalene		ug/L	U	,	8270_SVOA_GCMS	Estimated; %R < 41 >20
B25M04	2-Methylphenol (cresol, o-)		-	U	J		
B25M09			ug/L	U	J	8270_SVOA_GCMS	Estimated; %R < 20
	2-Methylphenol (cresol, o-)		ug/L	U	J	8270_SVOA_GCMS	Estimated; %R < 20
B25M14	2-Methylphenol (cresol, o-)		ug/L		J	8270_SVOA_GCMS	Estimated; %R < 20
B25M04	2-Nitroaniline		ug/L	U)	8270_SVOA_GCMS	Estimated; %R < 41 > 20
B25M09	2-Nitroaniline		ug/L	U	J	8270_SVOA_GCMS	Estimated; %R < 41 >20
B25M14	2-Nitroaniline		ug/L	U	J	8270_SVOA_GCMS	Estimated; %R < 41 >20
B25M04	2-Nitrophenol		ug/L	U	J	8270_SVOA_GCMS	Estimated; %R < 41 >20
B25M09	2-Nitrophenol	1	ug/L	U	IJ	8270_SVOA_GCMS	Estimated; %R < 41 > 20

Table A-25. Summary of 2010 Sample Results Qualified Because Surrogate Recoveries Did Not Meet QC Acceptance Criteria

		Value					
Sample ID	Analyte Name	Reported	Units	Lab Qualifier	Validation Qualifier	METHOD_NAME	Reason
B25M14	2-Nitrophenol	1	ug/L	U	J	8270_SVOA_GCMS	Estimated; %R < 41 > 20
B25M04	3-Nitroaniline	1	ug/L	U	J	8270_SVOA_GCMS	Estimated; %R < 41 >20
B25M09	3-Nitroaniline	1	ug/L	U	J	8270_SVOA_GCMS	Estimated; %R < 41 >20
B25M14	3-Nitroaniline	1	ug/L	U	J	8270_SVOA_GCMS	Estimated; %R < 41 >20
B25M04	4-Chloro-3-methylphenol	1	ug/L	U	J	8270_SVOA_GCMS	Estimated; %R < 41 >20
B25M09	4-Chloro-3-methylphenol	1	ug/L	U	J	8270_SVOA_GCMS	Estimated; %R < 41 >20
B25M14	4-Chloro-3-methylphenol	1	ug/L	U	J	8270_SVOA_GCMS	Estimated; %R < 41 >20
B25M04	4-Chloroaniline	1	ug/L	U	Ĵ	8270_SVOA_GCMS	Estimated; %R < 41 >20
B25M09	4-Chloroaniline	1	ug/L	U	J	8270_SVOA_GCMS	Estimated; %R < 41 >20
B25M14	4-Chloroaniline	1	ug/L	U	J	8270_SVOA_GCMS	Estimated; %R < 41 >20
B25M04	4-Chlorophenylphenyl ether	1	ug/L	U	J	8270_SVOA_GCMS	Estimated; %R < 41 >20
B25M09	4-Chlorophenylphenyl ether	1	ug/L	U	J	8270_SVOA_GCMS	Estimated; %R < 41 >20
B25M14	4-Chlorophenylphenyl ether	1	ug/L	U	J	8270_SVOA_GCMS	Estimated; %R < 41 >20
B25M04	4-Methylphenol (cresol, p-)	10	ug/L	U	J	8270_SVOA_GCMS	Estimated; %R < 20
B25M09	4-Methylphenol (cresol, p-)	10	ug/L	U	J	8270_SVOA_GCMS	Estimated; %R < 20
B25M14	4-Methylphenol (cresol, p-)	10	ug/L	U	Ĵ	8270_SVOA_GCMS	Estimated; %R < 20
B25M04	4-Nitroaniline		ug/L	U	J	8270_SVOA_GCMS	Estimated; %R < 41 >20
B25M09	4-Nitroaniline	1	ug/L	U	J	8270_SVOA_GCMS	Estimated; %R < 41 >20
B25M14	4-Nitroaniline	1	ug/L	U	J	8270_SVOA_GCMS	Estimated; %R < 41 >20
B25M04	4-Nitrophenol	2	ug/L	U	J	8270_SVOA_GCMS	Estimated; %R < 41 >20
B25M09	4-Nitrophenol	2	ug/L	U	J	8270_SVOA_GCMS	Estimated; %R < 41 >20
B25M14	4-Nitrophenol	2	ug/L	U	J	8270_SVOA_GCMS	Estimated; %R < 41 > 20
B25PC5	4-Nitrophenol	0.9	ug/L	UT	J	8270_SVOA_GCMS	Estimated; %R <54 >20
B26M91	4-Nitrophenol	2	ug/L	U	R	8270_SVOA_GCMS	Rejected; %R <20
B26M96	4-Nitrophenol	2	ug/L	U	R	8270_SVOA_GCMS	Rejected; %R <20
B26MB1	4-Nitrophenol	2	ug/L	U	R	8270 SVOA GCMS	Rejected; %R <20
B25M04	Acenaphthene	1	ug/L	U	J	8270_SVOA_GCMS	Estimated; %R < 41 >20
B25M09	Acenaphthene	1	ug/L	U	J	8270_SVOA_GCMS	Estimated; %R < 41 > 20
B25M14	Acenaphthene	1	ug/L	U	J	8270_SVOA_GCMS	Estimated; %R < 41 >20
B25M04	Acenaphthylene	1	ug/L	U	J	8270_SVOA_GCMS	Estimated; %R < 41 > 20
B25M09	Acenaphthylene	1	ug/L	U	J	8270_SVOA_GCMS	Estimated; %R < 41 > 20
B25M14	Acenaphthylene	1	ug/L	U	j	8270_SVOA_GCMS	Estimated; %R < 41 >20
B25M04	Bis(2-Chloroethoxy)methane	1	ug/L	U	J	8270_SVOA_GCMS	Estimated; %R < 41 >20
B25M09	Bis(2-Chloroethoxy)methane	1	ug/L	U	J	8270_SVOA_GCMS	Estimated; %R < 41 > 20
B25M14	Bis(2-Chloroethoxy)methane	1	ug/L	U	J	8270_SVOA_GCMS	Estimated; %R < 41 >20
B25M04	Bis(2-chloroethyl) ether	1	ug/L	U	J	8270_SVOA_GCMS	Estimated; %R < 20
B25M09	Bis(2-chloroethyl) ether	1	ug/L	U	J	8270_SVOA_GCMS	Estimated; %R < 20
B25M14	Bis(2-chloroethyl) ether	1	ug/L	U	J	8270_SVOA_GCMS	Estimated; %R < 20
B25M04	Dibenzofuran	1	ug/L	U	J	8270_SVOA_GCMS	Estimated; %R < 41 > 20
B25M09	Dibenzofuran		ug/L	U	J	8270_SVOA_GCMS	Estimated; %R < 41 >20
B25M14	Dibenzofuran	1	ug/L	U	J	8270_SVOA_GCMS	Estimated; %R < 41 >20
B25M04	Diethylphthalate		ug/L	U	J	8270_SVOA_GCMS	Estimated; %R < 41 >20
B25M09	Diethylphthalate	+	ug/L	U	J	8270_SVOA_GCMS	Estimated; %R < 41 >20
B25M14	Diethylphthalate	+	ug/L	J	J	8270_SVOA_GCMS	Estimated; %R < 41 >20
B25M04	Dimethyl phthalate		ug/L	U	J	8270_SVOA_GCMS	Estimated; %R < 41 >20
B25M09	Dimethyl phthalate		ug/L	U	J	8270 SVOA GCMS	Estimated; %R < 41 >20
B25M14	Dimethyl phthalate	+	ug/L	U	J	8270 SVOA GCMS	Estimated; %R < 41 > 20

Table A-25. Summary of 2010 Sample Results Qualified Because Surrogate Recoveries Did Not Meet QC Acceptance Criteria

Sample ID	Analyte Name	Value Reported	Units	Lab Qualifier	Validation Qualifier	METHOD NAME	Reason
B25M09	Ethylbenzene	0.086	Total Control	U	R	8260 VOA GCMS	Rejected; %R <20
B25M04	Fluorene		ug/L	U	1	8270 SVOA GCMS	Estimated; %R < 41 > 20
B25M09	Fluorene	1	ug/L	U	J	8270 SVOA GCMS	Estimated; %R < 41 >20
B25M14	Fluorene	1	ug/L	U	j	8270 SVOA GCMS	Estimated; %R < 41 > 20
B25M04	Hexachlorobutadiene	1	ug/L	U	j	8270 SVOA GCMS	Estimated; %R < 41 >20
B25M09	Hexachlorobutadiene		ug/L	U	j	8270 SVOA GCMS	Estimated; %R < 41 > 20
B25M14	Hexachlorobutadiene	1	ug/L	U	J	8270 SVOA GCMS	Estimated; %R < 41 > 20
B25M04	Hexachlorocyclopentadiene	1	ug/L	U	J	8270 SVOA GCMS	Estimated; %R < 41 > 20
B25M09	Hexachlorocyclopentadiene		ug/L	U	J	8270 SVOA GCMS	Estimated; %R < 41 > 20
B25M14	Hexachlorocyclopentadiene	1	ug/L	U	J	8270 SVOA GCMS	Estimated; %R < 41 > 20
B25M04	Hexachloroethane	1	ug/L	U	J	8270 SVOA GCMS	Estimated; %R < 20
B25M09	Hexachloroethane		ug/L	U	J	8270 SVOA GCMS	Estimated; %R < 20
B25M14	Hexachloroethane		ug/L	U	J	8270 SVOA GCMS	Estimated; %R < 20
B25M04	Isophorone		ug/L	U	j	8270 SVOA GCMS	Estimated; %R < 41 > 20
B25M09	Isophorone		ug/L	U	j	8270 SVOA GCMS	Estimated; %R < 41 > 20
B25M14	Isophorone	1	ug/L	U	J	8270 SVOA GCMS	Estimated; %R < 41 >20
B25M04	Naphthalene	1	ug/L	U	J	8270 SVOA GCMS	Estimated; %R < 41 > 20
B25M09	Naphthalene	1	ug/L	U	J	8270 SVOA GCMS	Estimated; %R < 41 >20
B25M14	Naphthalene		ug/L	U	J	8270 SVOA GCMS	Estimated; %R < 41 >20
B25M04	Nitrobenzene		ug/L	U	J	8270 SVOA GCMS	Estimated; %R < 41 >20
B25M09	Nitrobenzene	1	ug/L	U	J	8270 SVOA GCMS	Estimated; %R < 41 >20
B25M14	Nitrobenzene	1	ug/L	U	J	8270 SVOA GCMS	Estimated; %R < 41 >20
B25M04	n-Nitrosodi-n-dipropylamine	1	ug/L	U	J	8270 SVOA GCMS	Estimated; %R < 20
B25M09	n-Nitrosodi-n-dipropylamine		ug/L	U	J	8270_SVOA_GCMS	Estimated; %R < 20
B25M14	n-Nitrosodi-n-dipropylamine	1	ug/L	U	J	8270_SVOA_GCMS	Estimated; %R < 20
B25PC5	Pentachlorophenol	0.9	ug/L	UT	J	8270_SVOA_GCMS	Estimated; %R <54 >20
B26M91	Pentachlorophenol		ug/L	U	R	8270_SVOA_GCMS	Rejected; %R <20
B26M96	Pentachlorophenol		ug/L	U	R	8270_SVOA_GCMS	Rejected; %R <20
B26MB1	Pentachlorophenol	1.3	ug/L	U	R	8270_SVOA_GCMS	Rejected; %R <20
B25M04	Phenol	2	ug/L	U	J	8270_SVOA_GCMS	Estimated; %R < 20
B25M09	Phenol	2	ug/L	U	J	8270_SVOA_GCMS	Estimated; %R < 20
B25M14	Phenol	2	ug/L	U	j	8270_SVOA_GCMS	Estimated; %R < 20
B25PC5	Phenol	0.9	ug/L	UT	J	8270_SVOA_GCMS	Estimated; %R <54 >20
B26M91	Phenol	2	ug/L	U	R	8270_SVOA_GCMS	Rejected; %R <20
B26M96	Phenol	2	ug/L	U	R	8270_SVOA_GCMS	Rejected; %R <20
B26MB1	Phenol	2	ug/L	U	R	8270_SVOA_GCMS	Rejected; %R <20
B25M09	Styrene	0.074	ug/L	U	R	8260_VOA_GCMS	Rejected; %R <20
B25M09	Tetrachloroethene		ug/L	U	R	8260_VOA_GCMS	Rejected; %R <20
B25M09	Toluene	0.072	ug/L	U	R	8260_VOA_GCMS	Rejected; %R <20
B25M09	Trichloroethene	0.21	ug/L	U	R	8260_VOA_GCMS	Rejected; %R <20
B25M09	Xylenes (total)	0.2	ug/L	U	R	8260_VOA_GCMS	Rejected; %R <20

Table A-26. Summary of 2012 Sample Results Qualified Because Surrogate Recoveries Did Not Meet QC Acceptance Criteria

		Value	25.785				
Sample ID	Analyte Name	Reported	Units	Lab Qualifier	Validation Qualifier	METHOD_NAME	Reason
B2L1C9	Phenol		ug/L	U	J	8270_SVOA_GCMS	Estimated; %R <41 >20
B2L1C9	n-Nitrosodi-n-dipropylamine		ug/L	U	J	8270_SVOA_GCMS	Estimated; %R <41 >20
B2L1C9	2-Methylphenol (cresol, o-)		ug/L	U	J	8270_SVOA_GCMS	Estimated; %R <41 >20
B2L1C9	2-Chlorophenol		ug/L	U	J	8270_SVOA_GCMS	Estimated; %R <41 >20
B2L1C9	3+4 Methylphenol (cresol, m+p)		ug/L	U	J	8270_SVOA_GCMS	Estimated; %R <41 >20
B2L8R1	1,4-Dichlorobenzene		ug/L	U	J	8270_SVOA_GCMS	Estimated; %R <41 >20
B2L8R1	n-Nitrosodi-n-dipropylamine		ug/L	U	J	8270_SVOA_GCMS	Estimated; %R <41 >20
B2L8R1	3+4 Methylphenol (cresol, m+p)	0.9	ug/L	U	J	8270_SVOA_GCMS	Estimated; %R <41 >20
B2L8R1	Phenol	0.9	ug/L	U	J	8270_SVOA_GCMS	Estimated; %R <41 >20
B2L8R1	2-Methylphenol (cresol, o-)	0.9	ug/L	U	J	8270_SVOA_GCMS	Estimated; %R <41 >20
B2L8R1	2-Chlorophenol	0.9	ug/L	U	J	8270_SVOA_GCMS	Estimated; %R <41 >20
B2M5J4	Phenol	0.9	ug/L	U	J	8270_SVOA_GCMS	Estimated; %R <41 >20
B2M5J4	n-Nitrosodi-n-dipropylamine	0.9	ug/L	U	J	8270_SVOA_GCMS	Estimated; %R <41 >20
B2M5J4	2-Methylphenol (cresol, o-)	0.9	ug/L	U	J	8270_SVOA_GCMS	Estimated; %R <41 >20
B2M5J4	2-Chlorophenol	0.9	ug/L	U	J	8270_SVOA_GCMS	Estimated; %R <41 >20
B2M5J4	3+4 Methylphenol (cresol, m+p)	0.9	ug/L	U	J	8270_SVOA_GCMS	Estimated; %R <41 >20
B2KK39	4-Nitrophenol	2.2	ug/L	U	R	8040_PHENOLIC_GC	Rejected; %R <20
B2KK39	2,4-Dimethylphenol	2.1	ug/L	U	R	8040_PHENOLIC_GC	Rejected; %R <20
B2KK39	2,3,4,6-Tetrachlorophenol	2	ug/L	U	R	8040_PHENOLIC_GC	Rejected; %R <20
B2KK39	4-Chloro-3-methylphenol		ug/L	U	R	8040 PHENOLIC GC	Rejected; %R <20
B2KK39	3+4 Methylphenol (cresol, m+p)	2.2	ug/L	U	R	8040_PHENOLIC_GC	Rejected; %R <20
B2KK39	Phenol	2.3	ug/L	U	R	8040_PHENOLIC_GC	Rejected; %R <20
B2KK39	2,4-Dichlorophenol	2.1	ug/L	U	R	8040_PHENOLIC_GC	Rejected; %R <20
B2KK39	2,4-Dinitrophenol	2.4	ug/L	U	R	8040_PHENOLIC_GC	Rejected; %R <20
B2KK39	4,6-Dinitro-2-methylphenol	2.2	ug/L	U	R	8040_PHENOLIC_GC	Rejected; %R <20
B2KK39	2,6-Dichlorophenol	2.1	ug/L	U	R	8040_PHENOLIC_GC	Rejected; %R <20
B2KK39	Pentachlorophenol	2.4	ug/L	U	R	8040_PHENOLIC_GC	Rejected; %R <20
B2KK39	2,4,6-Trichlorophenol	2.2	ug/L	U	R	8040_PHENOLIC_GC	Rejected; %R <20
B2KK39	2-Nitrophenol	2.3	ug/L	U	R	8040_PHENOLIC_GC	Rejected; %R <20
B2KK39	Dinoseb(2-secButyl-4,6-dinitrophenol)	2.4	ug/L	U	R	8040_PHENOLIC_GC	Rejected; %R <20
B2KK39	2-Methylphenol (cresol, o-)	2.2	ug/L	U	R	8040_PHENOLIC_GC	Rejected; %R <20
B2KK39	2-Chlorophenol	2.2	ug/L	U	R	8040_PHENOLIC_GC	Rejected; %R <20
B2KK39	2,4,5-Trichlorophenol	2.2	ug/L	U	R	8040_PHENOLIC_GC	Rejected; %R <20
B2MXD6	Anthracene	0.9	ug/L	U	J	8270_SVOA_GCMS	Estimated; %R <60 >20
B2MXD6	Acenaphthylene	0.9	ug/L	U	J	8270_SVOA_GCMS	Estimated; %R <60 >20
B2MXD6	Acenaphthene	0.9	ug/L	U	J	8270_SVOA_GCMS	Estimated; %R <60 >20
B2MXD6	Phenanthrene	0.9	ug/L	U	J	8270_SVOA_GCMS	Estimated; %R <60 >20
B2MXD6	Fluorene	0.9	ug/L	U	J	8270_SVOA_GCMS	Estimated; %R <60 >20
B2MXD6	Pentachlorophenol	0.9	ug/L	U	J	8270_SVOA_GCMS	Estimated; %R <60 >20
B2MXD6	Naphthalene	0.9	ug/L	U	J	8270_SVOA_GCMS	Estimated; %R <60 >20
B2MXD6	2-Methylnaphthalene		ug/L	U	J	8270_SVOA_GCMS	Estimated; %R <60 >20

1

This page intentionally left blank.

1	Appendix B
2 3	200-PO-1 Groundwater Operable Unit Trend/Outlier Evaluation

This page intentionally left blank.

1

1		Table	
2 3	Table B-1.	Summary of 200-PO-1 Groundwater OU Wells with Occurrences of Organic Compounds Above Comparison Values	B-1
4		Figures	
5	Figure B-1.	2,6-Dinitrotoluene Concentrations in Well 299-E24-23	B-4
6	Figure B-2.	Bis(2-ethylhexyl) Phthalate Concentrations in Well 299-E25-20	B-4
7	Figure B-3.	Bis(2-ethylhexyl) Phthalate Concentrations in Well 699-25-34A	B-5
8	Figure B-4.	Bis(2-ethylhexyl) Phthalate Concentrations in Well 699-S6-E4K	B-5
9	Figure B-5.	Bromodichloromethane Concentrations in Well 499-S0-7	B-6
10	Figure B-6.	Bromodichloromethane Concentrations in Well 499-S0-8	B-6
11	Figure B-7.	Bromodichloromethane Concentrations in Well 499-S1-8J	
12	Figure B-8.	Carbon Tetrachloride Concentrations in Well 299-E24-18	B-7
13	Figure B-9.	Carbon Tetrachloride Concentrations in Well 299-E25-20	
14	Figure B-10.	Carbon Tetrachloride Concentrations in Well 699-22-35	B-8
15	-	Carbon Tetrachloride Concentrations in Well 699-23-34A	
16	Figure B-12.	Carbon Tetrachloride Concentrations in Well 699-24-46	B-9
17	Figure B-13.	Carbon Tetrachloride Concentrations in Well 699-25-33A	B-10
18	ū	Carbon Tetrachloride Concentrations in Well 699-25-34A	
19	Figure B-15.	Carbon Tetrachloride Concentrations in Well 699-26-33	B-11
20	Figure B-16.	Carbon Tetrachloride Concentrations in Well 699-S6-E4A	B-11
21	Figure B-17.	Carbon Tetrachloride Concentrations in Well 699-S6-E4K	B-12
22	-	Carbon Tetrachloride Concentrations in Well 699-S6-E4L	
23	Figure B-19.	Chloroform Concentrations in Well 699-13-1A	B-13
24	Figure B-20.	Dibromochloromethane Concentrations in Well 499-S0-7	B-13
25	Figure B-21.	Dibromochloromethane Concentrations in Well 499-S0-8	B-14
26	Figure B-22.	Dibromochloromethane Concentrations in Well 499-S1-8J	B-14
27	Figure B-23.	n-Nitrosodi-n-Dipropylamine Concentrations in Well 299-E24-23	B-15
28	Figure B-24.	Trichloroethene Concentrations in Well 299-E17-14	B-15
29	Figure B-25.	Trichloroethene Concentrations in Well 299-E17-19	B-16
30	Figure B-26.	Trichloroethene Concentrations in Well 299-E24-16	B-16
31	Figure B-27.	Trichloroethene Concentrations in Well 299-E24-23	B-17
32	Figure B-28.	Trichloroethene Concentrations in Well 699-10-54A	B-17
33	Figure B-29.	Trichloroethene Concentrations in Well 699-S6-E4L	B-18
34 35			

This page intentionally left blank.

1

Table B-1. Summary of 200-PO-1 Groundwater OU Wells with Occurrences of Organic Compounds Above Comparison Values

	Comparison values					
Well	Trend Evaluation Comment	Figure #				
2,6-Dinitrotoluene (Comparison Value = 16 μg/L)						
299-E24-23	Presence does not suggest a trend. Single sample analyzed at this well over 10-year time frame.	Figure B-1				
Bis(2	-ethylhexyl) phthalate (Comparison Value = 6 με	g/L)				
299-E25-20	Presence not associated with a trend. Single occurrence and 3 nondetects. Also known as a common laboratory contaminant.	Figure B-2				
699-25-34A	Presence does not suggest a trend. Single sample analyzed at this well over 10-year time frame. Also known as a common laboratory contaminant.	Figure B-3				
699-S6-E4K	Presence not associated with a trend. Single detection and and 19 nondetects. Also known as a common laboratory contaminant.	Figure B-4				
Bron	nodichloromethane (Comparison Value = $0.71 \mu g$	z/L)				
499-S0-7	Concentrations suggest a trend; 3 samples collected over 10 year time frame.	Figure B-5				
499-S0-8	Concentrations suggest a trend; 3 samples collected over 10 year time frame.	Figure B-6				
499-S1-8J	Concentrations suggest a trend; 2 nondetects followed by two detections. Four samples collected over 10 year time frame.	Figure B-7				
Car	bon Tetrachloride (Comparison Value = 0.63 μg/	L)				
299-E24-18	Presence does not suggest a trend. Single sample analyzed at this well over 10-year time frame.	Figure B-8				
299-E25-20	Presence does not suggest a trend. Single detection followed by a single nondetect.	Figure B-9				
699-22-35	Presence not associated with a trend. Three nonconsecutive detections and 20 nondetects.	Figure B-10				

Table B-1. Summary of 200-PO-1 Groundwater OU Wells with Occurrences of Organic Compounds Above Comparison Values

Well	Trend Evaluation Comment	Figure #			
699-23-34A	Presence not associated with a trend. Single detection and 35 nondetects.	Figure B-11			
699-24-46	Presence not associated with a trend. Two nonconsecutive detections and 5 nondetects.	Figure B-12			
699-25-33A	Presence not associated with a trend. Single detection and 21 nondetects.	Figure B-13			
699-25-34A	Presence not associated with a trend. Three nonconsecutive detections and 18 nondetects.	Figure B-14			
699-26-33	Presence not associated with a trend. Four detections and 18 nondetects.	Figure B-15			
699-S6-E4A	Presence not associated with a trend. Two consecutive detections and 19 nondetects.	Figure B-16			
699-S6-E4K	Presence not associated with a trend. Single detection and 21 nondetects.	Figure B-17			
699-S6-E4L	Presence not associated with a trend. Three detections and 21 nondetects.	Figure B-18			
	Chloroform (Comparison Value = 1.4 μg/L)				
699-13-1A	Concentrations suggest a trend; 3 samples collected over 10 year time frame.	Figure B-19			
Dibror	nochloromethane(Comparison Value = 0.52 µ	ıg/L)			
499-S0-7	Concentrations suggest a trend; 3 samples collected over 10 year time frame.	Figure B-20			
499-S0-8	Concentrations suggest a trend; 3 samples collected over 10 year time frame.	Figure B-21			
499-S1-8J	Presence not associated with a trend. Single detection and three nondetects.	Figure B-22			
n-Nitrosodi-n-dipropylamine (Comparison Value = 0.013 μg/L)					
299-E24-23	Presence does not suggest a trend. Single detection and single nondetect.	Figure B-23			

Table B-1. Summary of 200-PO-1 Groundwater OU Wells with Occurrences of Organic Compounds Above Comparison Values

Well	Trend Evaluation Comment	Figure #				
7	Trichloroethene (Comparison Value = 0.95 μg/L)					
299-E17-14	Presence not associated with a trend. Two nonconsecutive detections and 4 nondetects.	Figure B-24				
299-E17-19	Presence not associated with a trend. Two nonconsecutive detections and 4 nondetects.	Figure B-25				
299-E24-16	Presence does not suggest a trend. Single sample analyzed at this well over 10-year time frame.	Figure B-26				
299-E24-23	Presence not associated with a trend. Single detection and 2 nondetects.	Figure B-27				
699-10-54A	Presence not associated with a trend. Single dectection preceded by 10 nondetects.	Figure B-28				
699-S6-E4L	Presence associated with an upward trend. Twelve detections and 9 nondetects. Recent increase in 2013.	Figure B-29				

Figure B-1. 2,6-Dinitrotoluene Concentrations in Well 299-E24-23

Figure B-2. Bis(2-ethylhexyl) Phthalate Concentrations in Well 299-E25-20

Figure B-3. Bis(2-ethylhexyl) Phthalate Concentrations in Well 699-25-34A

Figure B-4. Bis(2-ethylhexyl) Phthalate Concentrations in Well 699-S6-E4K

Figure B-5. Bromodichloromethane Concentrations in Well 499-S0-7

Figure B-6. Bromodichloromethane Concentrations in Well 499-S0-8

Figure B-1. Bromodichloromethane Concentrations in Well 499-S1-8J

Figure B-8. Carbon Tetrachloride Concentrations in Well 299-E24-18

Figure B-2. Carbon Tetrachloride Concentrations in Well 299-E25-20

Figure B-10. Carbon Tetrachloride Concentrations in Well 699-22-35

Figure B-12. Carbon Tetrachloride Concentrations in Well 699-24-46

Figure B-13. Carbon Tetrachloride Concentrations in Well 699-25-33A

Figure B-14. Carbon Tetrachloride Concentrations in Well 699-25-34A

Figure B-15. Carbon Tetrachloride Concentrations in Well 699-26-33

Figure B-16. Carbon Tetrachloride Concentrations in Well 699-S6-E4A

Figure B-17. Carbon Tetrachloride Concentrations in Well 699-S6-E4K

Figure B-18. Carbon Tetrachloride Concentrations in Well 699-S6-E4L

Figure B-19. Chloroform Concentrations in Well 699-13-1A

Figure B-20. Dibromochloromethane Concentrations in Well 499-S0-7

Figure B-21. Dibromochloromethane Concentrations in Well 499-S0-8

Figure B-22. Dibromochloromethane Concentrations in Well 499-S1-8J

Figure B-23. n-Nitrosodi-n-Dipropylamine Concentrations in Well 299-E24-23

Figure B-24. Trichloroethene Concentrations in Well 299-E17-14

Figure B-25. Trichloroethene Concentrations in Well 299-E17-19

Figure B-26. Trichloroethene Concentrations in Well 299-E24-16

Figure B-27. Trichloroethene Concentrations in Well 299-E24-23

Figure B-28. Trichloroethene Concentrations in Well 699-10-54A

Figure B-29. Trichloroethene Concentrations in Well 699-S6-E4L